Формула напряжения через эдс. Что такое внутреннее сопротивление

Главная / Электроснабжение

Внутреннее сопротивление источников тока пренебрежимо мало.
Внутреннее сопротивление источника тока пренебрежимо мало.
Внутреннее сопротивление источника тока, рассчитанное по данной формуле, будет, строго говоря, действительно только для данного интервала нагрузок вследствие того, что поляризация не пропорциональна плотности тока.
Внутреннее сопротивление источника тока - сопротивление, которым обладает, источник тока. Это важная характеристика всякого источника тока, определяющая его внутреннее падение напряжения, напряжение, которое может создать источник на концах питаемой им цепи, и тот наибольший ток, который может дать источник при коротком замыкании.
Внутреннее сопротивление источника тока - сопротивление, которым обладает источник тока.
Внутренним сопротивлением источника тока, сопротивлениями соединительных проводов и контактов в ключах пренебречь.
Чему равно внутреннее сопротивление источника тока, ЭДС которого равна 30 В, если после включения внешней цепи сопротивлением 6 Ом напряжение на зажимах батареи стало равным 18 В.
Отсюда находим внутреннее сопротивление источника тока.
Здесь и далее внутренним сопротивлением источника тока и подводящих проводов следует пренебречь, если оно не задано в условии.
Здесь тэар при небольшом внутреннем сопротивлении источника тока и соответственно небольшом сопротивлении лампы rgK относительно невелико. Соответственно тзар, определяющееся в основном высоким сопротивлением RgK (получающимся в результате того, что при разряде потенциал сетки оказывается под отрицательным потенциалом относительно катода), становится во много раз больше, чем тзар и длина экспоненциального импульса на выходе (считая продолжительность для половины амплитуды) в несколько десятков раз превышает длительность импульса, по-данного на вход.
Определить электродвижущую силу и внутреннее сопротивление источника тока, если при одном положении движка реостата амперметр показывает 0 2 А, вольтметр - 1 8 В, а при другом положении движка - 0 4 Аи 1 6 В соответственно.
Обозначим через г - внутреннее сопротивление источника тока, через R - сопротивление каждого из вольтметров.
Ничем, так как внутреннее сопротивление источника тока бесконечно велико.
Сначала определим ЭДС и внутреннее сопротивление источника тока.

Для определения ЭДС и внутреннего сопротивления источника тока к его выходу был подключен сначала резистор сопротивлением Д 2 Ом, затем - резистор сопротивлением Л2 4 Ом.
Наклон этих кривых определяется внутренним сопротивлением источника тока. В это понятие включается обычно как собственно омическое сопротивление, так и сопротивление, обусловленное поляризацией.
Здесь пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Для создания такого режима необходимо, чтобы внутреннее сопротивление источника тока было больше сопротивления базо-эмиг-терного перехода как в открытом, так и в закрытом состоянии. Чаще всего это условие выполняется при включении последовательно входу транзнсюра индуктивной катушки, которая одновременно является контурной катушкой.
При прохождении тока часть мощности выделяется на внутреннем сопротивлении источника тока.
К каким отрицательным последствиям приводит то, что внутреннее сопротивление источника тока дифференциального каскада имеет конечное значение.
Цепь из двух параллельных ветвей. U (в в течение t сек. равна.| Соотношения между единицами энергии. Мощность, передаваемая нагрузке, будет максимальной при раввщ ве внутреннего сопротивления источника тока и сопротивления нагрузки.
Зачастую серьезные недоразумения возникают у учащихся из-за неумения правильно учитывать влияние внутреннего сопротивления источников тока на режим работы всей электрической цепи. Ряд задач параграфа (например, 383, 385, 386, 392 - 395 и др.) посвящен специально выяснению этого вопроса, а также выяснению вопроса о выборе наиболее выгодных условий работы источников тока.
Кристаллы аммиаката цинка не-электропроводны, и образование этого соединения приводит к увеличению внутреннего сопротивления источника тока.
В любом замкнутом контуре (например, а ] 6, с алгебраическая сумма электродвижущих сил равна алгебраической сумме произведений величин токов на сопротивления отдельных участков цепи. Вычисляя сумму произведений токов на сопротивления отдельных участков цепи, следует учитывать также и внутренние сопротивления источников тока.
Если предположить, что емкость C0z пренебрежимо мала или включить ее в схему четырехполюсника Q, то внутреннее сопротивление источника тока / g можно считать действительным и равным У.
Получили, что максимальная мощность выделяется на нагрузке при условии, что величина внешнего сопротивления цепи R равна внутреннему сопротивлению источника тока.
Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под г - внутреннее сопротивление источника тока.

Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под т - внутреннее сопротивление источника тока.
Механическая система и ее электрические модели (метод четырехполюсников. Как уже указывалось выше, внутреннее сопротивление источника напряжения (первая система аналогий) должно быть весьма малым, а внутреннее сопротивление источника тока (вторая система аналогий) - весьма большим, по сравнению с сопротивлением модели.
К положительным качествам рассматриваемого преобразователя следует отнести то, что в нем не предъявляется особо жестких требований к переходному сопротивлению ключей, так как величина их переходного сопротивления составляет лишь незначительную часть внутреннего сопротивления источника тока и не оказывает влияния на точность преобразования.
Итак, при последовательном включении п одинаковых источников тока электродвижущая сила образующейся батареи в п раз превышает электродвижущую силу отдельного источника тока, однако в этом случае складываются не только электродвижущие силы, но также и внутренние сопротивления источников тока. Такое включение является выгодным, когда внешнее сопротивление цепи весьма велико в сравнении с внутренним сопротивлением.
Следует отметить, что схема рис. 1 - 2 6 эквивалентна схеме рис. 1 - 1 а только в отношений энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника тока.
Но Сумма разностей потенциалов замкнутой цепи равна нулю, сумма сопротивлений всех участков замкнутой цепи - это ее суммарное сопротивление, которое обычно записывают в виде двух слагаемых: R - внешнее (по отношению к источникам) сопротивление иг - внутреннее сопротивление источников тока.
Второй [ IMAGE ] Схема к примеру. В этом уравнении г и г % - внутренние сопротивления источни-ков тока е и е2 - на схеме не показаны; IR, IR2 и IRS - падения напряжения на внешних сопротивлениях цепи; / г, и / г2 - падения напряжений на внутренних сопротивлениях источников тока.
Внутреннее сопротивление источника тока может быть как чисто активным, так и реактивным.
Зависимость р / ро - отношения (выраженного в децибелах звукового давления на поверхности жесткого цилиндра (с высотой, равной его диаметру, куба, сферы к звуковому давлению, имевшему место в поле до их внесения, от отношения dA (или. /. - диаметра цилиндра или сферы (или ребра куба к длине волны. Параметр семейства кривых - угол Ф между осью цилиндра, куба, сферы и направлением прихода звука. При расчете микрофонных усилителей исходят из следующих соображений. Номинальное сопротивление микрофона является внутренним сопротивлением источника тока на входе усилителя, входное сопротивление усилителя - сопротивлением нагрузки микрофона.
В качестве источников тока в потенциометрии чаще всего применяют аккумуляторы или сухие элементы, значительно реже - стабилизированные источники постоянного тока. Современные потенциометры устроены таким образом, что внутреннее сопротивление источника тока не отражается на работе потенциометра. При работе с сухими батареями и аккумуляторами необходимо учитывать зависимость разрядного тока от времени, которая имеет минимальную крутизну через 10 - 15 мин после включения.
Распределение электрического напряжения вдоль обмотки сверхпроводящего магнита при образовании в нем нормальной зоны. На самом деле (рис. 9.2) высокий потенциал развивается внутри обмотки, где существует активная компонента напряжения, направленная навстречу индуктивной. Небольшая разность потенциалов между подводящими проводами обусловлена внутренним сопротивлением источника тока, который обычно автоматически отключается при переходе магнита в нормальное состояние. Но даже если это не произойдет, напряжение на источнике тока будет составлять всего лишь несколько вольт по сравнению с сотнями и, возможно, тысячами вольт в нормальной зоне. Поэтому напряжением источника можно пренебречь, но источник тока следует по возможности быстро отключить, чтобы не допустить длительного тепловыделения в обмотке и криостате.

Символом Rt на рис. 5.12, а обозначено внутреннее сопротивление источника тока.
Ключ, закорачивающий точку А на землю, с малым сопротивлением в открытом состоянии. Сопротивление открытого ключа обычно пренебрежимо мало по срав-нению с внутренним сопротивлением источника тока. Поэтому падение напряжения на ключе вызывает ничтожную погрешность.
Зависимость зарядного тока гео. На рис. 3 показана зависимость зарядного тока геометрической емкости от времени без учета токов абсорбции. Необходимо отметить, что спад тока в этом случае определяется внутренним сопротивлением источника тока, а не состоянием изоляции.
Хорошо, что при решении задачи Вы воспользовались методом эквивалентного активного двухполюсника. К сожалению, Вы ошиблись в определении значения сопротивления активного двухполюсника R3K: внутреннее сопротивление источника тока бесконечно велико, поэтому пассивный двухполюсник, к которому преобразуется схема рис. 6.13 а, при определении R3K будет содержать два резис-тивных элемента, соединенных последовательно.
К, так как в противном случае в выражении (5.1) должно быть учтено также напряжение непосредственно на входе усилителя. Вторым ограничивающим условием при выводе соотношения (5.1) является предположение о том, что внутреннее сопротивление источника тока весьма мало.
Таким образом, трансформатор изменяет величину сопротивления R в k2 раз. Этим широко пользуются при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Основные типы однофазных трансформаторов.| Однофазные трансформаторы большой мощности. Таким образом, трансформатор изменяет величину сопротивления г в k2 раз. Этим свойством широко пользуются ьри разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Простей-шая электрическая цепь. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Цепь постоянного тока. Напряжение, действующее во внешней электрической цепи источника тока, может быть представлено в виде суммы падений напряжения на отдельных элементах этой цепи. Но ведь ток, циркулирующий в цепи, протекает и через источник тока, который имеет свое сопротивление, называемое внутренним сопротивлением источника тока.

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

  • Автомобильный свинцово-кислотный аккумулятор напряжением 12 вольт и ёмкостью 55 А·ч
  • Восемь батареек типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше - примерно 1 А·ч

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников, то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление , то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности , отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта - ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции - ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему , внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления - это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов U out = φ 2 − φ 1 ) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

(Напряжения)

где U out1 I 1 , U out2 - выходное напряжение при токе I 2 . Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система () записывается следующим образом:

где U oc - выходное напряжение в режиме холостого хода (англ. open circuit ), то есть при нулевом токе нагрузки; I sc - ток нагрузки в режиме короткого замыкания (англ. short circuit ), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

(ВнутрСопр)

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение , которое принципиально не отличается от расчёта - также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром - оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы - конденсаторы и/или катушки индуктивности , то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов - их комплексные амплитуды , то есть расчет производится методом комплексных амплитуд .

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией , а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль , аргумент , только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки - это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы . Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители , однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор , который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения , что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r . Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

Большое внутреннее сопротивление

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

  • элементов с отрицательным дифференциальным сопротивлением , например, туннельных диодов

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов .

См. также

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. - М. - Л.: Энергия, 1965. - 892 с.
  • Джонс М. Х. Электроника - практический курс. - М.: Техносфера, 2006. - 512 с. ISBN 5-94836-086-5

Примечания


Wikimedia Foundation . 2010 . Политехнический терминологический толковый словарь

Вопрос №1. Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях.

Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы .

Источники энергии , т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Приемники , или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током . Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I .

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i .

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила . На зажимах источника возникает разность потенциалов или напряжение , под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.

Различают активные и пассивные цепи , участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии. Электрическую цепь называют линейной , если ни один параметр цепи не зависит от величины или направления тока, или напряжения. Электрическая цепь является нелинейной , если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема - это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения - это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.

В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

где l - длина проводника;

S - сечение;

r - удельное сопротивление.

Величина, обратная сопротивлению, называется проводимостью .

Сопротивление измеряется в омах (Ом), а проводимость - в сименсах (См). Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P - потребляемая мощность;

I - ток. Сопротивление в схеме замещения изображается следующим образом:

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W - число витков катушки;

Ф - магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают. Емкость конденсатора, измеряемая в фарадах (Ф ), определяется по формуле:

где q - заряд на обкладках конденсатора;

Uс - напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением. Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

изображен источник ЭДС, к зажимам которого подключено сопротивление R.

Ri - внутреннее сопротивление источника ЭДС.

Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Ток (1.2)(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.

Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.

Возможен другой путь идеализации источника: представление его в виде источника тока.

Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю.

Поделим левую и правую части уравнения (1.2) на Ri и получим

где - ток источника тока; - внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи . Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

Различают разветвленные и неразветвленные схемы .

На рис. 1.5 изображена неразветвленная схема.

На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.

Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов.

Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью . Место соединения двух и более ветвей электрической цепи называется узлом . Узел, в котором сходятся две ветви, называется устранимым . Узел является неустранимым , если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой .

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.

Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром .

В зависимости от нагрузки различают следующие режимы работы : номинальный, режим холостого хода, короткого замыкания, согласованный режим.

При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.

Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.

Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.

Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.

Падением напряжения на сопротивлении называется произведение тока , протекающего через сопротивление, на величину этого сопротивления

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему и запишем для нее уравнение по первому закону Кирхгофаили Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус".

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа. Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают.

При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви. Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке. ПолучимИз этого уравнения выведем формулу для токаВ общем виде:где R - сумма сопротивлений ветви;

E - алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением тока и со знаком "минус", если не совпадает.

Вопрос №2. Идеальный источник ЭДС представляет собой активный элемент с двумя выводами, напряжение на котором не зависит от сопротивления внешней цепи, т.е., не зависит от тока, проходящего через источник. Изображение идеального источника ЭДС приведено на рис. 1.8а

Предполагается, что внутри такого источника пассивные элементы (r, L, C) отсутствуют, и поэтому протекание тока через него не вызывает в нем падение напряжения. Внутреннее сопротивление идеального источника ЭДС равно нулю.

В отличие от пассивных элементов, где ток протекает от большего потенциала к меньшему, в источнике ЭДС этот процесс обратный вследствие действия внутренних сил источника. Работа, затрачиваемая на перемещение заряда от вывода “–” к выводу “+” и отнесенная к величине этого заряда, называется электродвижущей силой источника , и обозначатся в общем случае как e , а постоянная ЭДС, как Е. Соответственно, напряжение на выводах источника ЭДС равно u = e, т.е., положительное направление напряжения противоположно положительному направлению ЭДС.

Идеальных источников ЭДС в природе нет. Нет такого источника, короткое замыкание (соединение выводов проводником с сопротивлением, равным нулю) которого приводит к бесконечно большим токам iкз =. В любом источнике существует внутреннее сопротивление, падение напряжения на котором при коротком замыкании уравновешивает ЭДС источника, поэтому ток короткого замыкания имеет конечную величину.

Источник ЭДС конечной мощности изображается идеальным источником ЭДС и последовательно включенным пассивным элементом (рис. 1.8.б), параметры которого подбираются такими, чтобы отобразить реальные процессы на выводах источника. В цепях постоянного тока это, как правило, внутреннее сопротивление (на рис. 1.8б обозначено как Rвн), величина которого много меньше параметров внешней цепи. В некоторых случаях этим сопротивлением можно пренебречь (в зависимости от требуемой точности расчета). Вольтамперные характеристики идеального (1) и реального (2) источников ЭДС постоянного тока изображены на рис

Источник тока представляет собой активный элемент, ток которого практически не зависит от напряжения на его выводах. Это может быть, если сопротивление источника тока несоизмеримо больше сопротивления внешней цепи. Целесообразно ввести понятие идеального источника тока. Очевидно, что у идеального источника тока внутреннее сопротивление равно бесконечности.

Условное обозначение идеального источника тока приведено на рис. 1.9а. Двойная стрелка и знаки (+) и (–) указывают на положительное направление тока и полярность источника.

Если к идеальному источнику тока подключить сопротивление и увеличивать его до бесконечности, то напряжение на его выводах и соответственно мощность будут неограниченно возрастать. Поэтому идеальный источник тока, также как и идеальный источник ЭДС, рассматриваются как источники бесконечной мощности.

Источники тока конечной мощности (реальные) изображается в виде идеального с подключенным к нему пассивным элементом (рис. 1.9б), которым ограничивается мощность, выдаваемая во внешнюю цепь, и отражаются внутренние параметры источника. Ток реального источника меньше тока идеального на величину тока Iвн, протекающего по внутреннему сопротивлению Rвн.

Вопрос №3. Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу - индуктивности - является реальный элемент электрической цепи - индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

где N - число витков катушки.

Индуктивность В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф - Фси + Фвп.

Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая - определяется магнитными полями, существование которых не связано с током катушки - магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: ψ= ψси + ψвп

Индуктивность наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:

e = eси + eвп ,

здесь еси - ЭДС самоиндукции, евп - ЭДС внешних полей.

Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер - амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1).В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).

Вебер-амперные характеристики индуктивной катушки: 1 - нелинейная, 2 - линейная.

В системе единиц СИ индуктивность выражают в генри (Гн).

При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:Идеализированный элемент электрической цепи - индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля.

Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление - это сопротивление раствора электролита и электродов, для генератора - сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.



Гальванические элементы (такие как батарейка) - напротив - имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум - десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:



Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.



Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал