Картина магнитных линий прямого проводника с током. Магнитное поле прямого проводника. Магнитные линии (Гребенюк Ю.В.)

Главная / Электротехника

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная э. д. с.

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (фиг. 78). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (фиг. 79). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика:». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (фиг. 81),

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (фиг. 82). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть

Получено независимо и отдельно от тока. Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитиой индукции в результате обобщения опытных данных было установлено Био и Саваром (фиг. 83). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого АВ прямо пропорциональна длине А1 этого элемента, величине протекающего тока I, синусу угла а между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиуса-вектора r:

генри (гн)-единица индуктивности; 1 гн= 1 ом сек.

- относительная магнитная проницаемость - безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости пустоты. Размерность магнитной индукции можно найти по формуле

вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции-гаусс (гс):

Закон Био и Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где- расстояние от проводника до точки, где определяется

Магнитная индукция. Отношение магнитной индукции к произведению магнитных проницаемостей называется напряженностью магнитного поля и обозначается буквой Н:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля. Найдем размерность Н:

Иногда пользуются другой единицей напряженности - эрстедом (эр):

1 эр = 79,6 a/м = 0,796 а/см.

Напряженность магнитного поля Н, как и магнитная индукция В, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

т. е. магнитный поток измеряется в вольт-секундах или веберах. Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс. 1 мкс = 1 гс см2.

Всем доброго времени суток. В прошлой статье я рассказал о магнитном поле и немного остановился на его параметрах. Данная статья продолжает тему магнитного поля и посвящена такому параметру как магнитная индукция. Для упрощения темы я буду рассказывать о магнитном поле в вакууме, так как различные вещества имеют разные магнитные свойства, и как следствие необходимо учитывать их свойства.

Закон Био – Савара – Лапласа

В результате исследования магнитных полей создаваемых электрическим током, исследователи пришли к таким выводам:

  • магнитная индукция, создаваемая электрическим током пропорциональна силе тока;
  • магнитная индукция имеет зависимость от формы и размеров проводника, по которому протекает электрический ток;
  • магнитная индукция в любой точке магнитного поля зависит от расположения данной точки по отношению к проводнику с током.

Французские учёные Био и Савар, которые пришли к таким выводам обратились к великому математику П. Лапласу для обобщения и вывода основного закона магнитной индукции. Он высказал гипотезу, что индукция в любой точке магнитного поля, создаваемое проводником с током можно представить в виде суммы магнитных индукций элементарных магнитных полей, которые создаются элементарным участком проводника с током. Данная гипотеза и стала законом магнитной индукции, называемого законом Био – Савара – Лапласа . Для рассмотрения данного закона изобразим проводник с током и создаваемую им магнитную индукцию

Магнитная индукция dB, создаваемая элементарным участком проводника dl.

Тогда магнитная индукция dB элементарного магнитного поля, которое создается участком проводника dl , с током I в произвольной точке Р будет определяться следующим выражением

где I – сила тока, протекающая по проводнику,

r – радиус-вектор, проведённый от элемента проводника к точке магнитного поля,

dl – минимальный элемент проводника, который создает индукцию dB,

k – коэффициент пропорциональности, зависящий от системы отсчёта, в СИ k = μ 0 /(4π)

Так как является векторным произведением, тогда итоговое выражение для элементарной магнитной индукции будет выглядеть следующим образом

Таким образом, данное выражение позволяет найти магнитную индукцию магнитного поля, которое создается проводником с током произвольной формы и размеров при помощи интегрирования правой части выражения

где символ l обозначает, что интегрирование происходит по всей длине проводника.

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.


Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид


где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Магнитная индукция кольца

Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется. Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока. Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.

В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.

В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид

Остается только проинтегрировать полученное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник.

Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х , которая перпендикулярна плоскости ограниченной круговым током.


В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dB X , которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB

Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции

Теперь проинтегрируем данное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник,

х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.

Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.

Циркуляция вектора магнитной индукции

Для расчёта магнитной индукции простых магнитных полей достаточно закона Био-Савара-Лапласа. Однако при более сложных магнитных полях, например, магнитное поле соленоида или тороида, количество расчётов и громоздкость формул значительно увеличится. Для упрощения расчётов вводится понятие циркуляции вектора магнитной индукции.


Представим некоторый контур l , который перпендикулярный току I . В любой точке Р данного контура, магнитная индукция В направлена по касательной к данному контуру. Тогда произведение векторов dl и В описывается следующим выражением

Так как угол достаточно мал, то векторов dl В определяется, как длина дуги

Таким образом, зная магнитную индукцию прямолинейного проводника в данной точке, можно вывести выражение для циркуляции вектора магнитной индукции

Теперь остаётся проинтегрировать получившееся выражение по всей длине контура

В нашем случае вектор магнитной индукции циркулирует вокруг одного тока, в случае же нескольких токов выражение циркуляции магнитной индукции переходит в закон полного тока, который гласит:

Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, которые охватывает данный контур.

Магнитное поле соленоида и тороида

С помощью закона полного тока и циркуляции вектора магнитной индукции достаточно легко определить магнитную индукцию таких сложных магнитных полей как у соленоида и тороида.

Соленоидом называется цилиндрическая катушка, которая состоит из множества витков проводника, намотанных виток к витку на цилиндрический каркас. Магнитное поле соленоида фактически состоит из множества магнитных полей кругового тока с общей осью, перпендикулярной к плоскости каждого кругового тока.


Воспользуемся циркуляцией вектора магнитной индукции и представим циркуляцию по прямоугольному контуру 1-2-3-4 . Тогда циркуляция вектора магнитной индукции для данного контура будет иметь вид

Так как на участках 2-3 и 4-1 вектор магнитной индукции перпендикулярен к контуру, то циркуляция равна нулю. На участке 3-4 , который значительно удалён от соленоида, то его так же можно не учитывать. Тогда с учётом закона полного тока магнитная индукция в соленоиде достаточно большой длины будет иметь вид

где n – число витков проводника соленоида, которое приходится на единицу длины,

I – ток, протекающий по соленоиду.

Тороид образуется путём намотки проводника на кольцевой каркас. Данная конструкция эквивалентна системе из множества одинаковых круговых токов, центры которых расположены на окружности.

В качестве примера рассмотрим тороид радиуса R , на который намотано N витков провода. Вокруг каждого витка провода возьмём контур радиуса r , центр данного контура совпадает в центром тороида. Так как вектор магнитной индукции B направлен по касательной к контуру в каждой точке контура, то циркуляция вектора магнитной индукции будет иметь вид

где r – радиус контура магнитной индукции.

Контур проходя внутри тороида охватывает N витков провода с током I, тогда закон полного тока для тороида будет иметь вид

где n – число витков проводника, которое приходится на единицу длины,

r – радиус контура магнитной индукции,

R – радиус тороида.

Таким образом, используя закон полного тока и циркуляцию вектора магнитной индукции можно рассчитать сколь угодно сложное магнитное поле. Однако закон полного тока дает правильные результаты только лишь в вакууме. В случае расчёта магнитной индукции в веществе необходимо учитывать так называемые молекулярные токи. Об этом пойдёт речь в следующей статье.

Теория это хорошо, но теория без практики - это просто сотрясание воздуха.

На прошлых уроках мы упоминали о магнитном действии электрического тока. Можно сделать вывод, что электрические и магнитные явления связанны между собой. На данном уроке, тема которого « Магнитное поле прямого проводника. Магнитные линии», мы начнём подтверждать этот вывод.

Человечество собирает знания о магнитных явлениях более 4500 лет (первые упоминания об электрических явлениях датируются тысячелетием позже). В середине 19-го века учёные начали уделять внимание поиску взаимосвязей между явлениями электричества и магнетизма, поэтому, накопленные ранее, теоретические и экспериментальные сведения, отдельно по каждому явлению, стали хорошей базой для создания единой электромагнитной теории.

Вероятнее всего, необычные свойства природного минерала магнетита (см. Рис. 1) были известны в Месопотамии ещё в бронзовом веке, а после возникновения железной металлургии нельзя было не заметить, что магнетит притягивает железные изделия.

Рис. 1. Магнетит ()

О причинах такого притяжения думал ещё древнегреческий философ Фалес Милетский, который объяснял его особой одушевлённостью этого минерала, поэтому, неудивительно, что слово магнит тоже имеет греческие корни. Старинная греческая легенда рассказывает о пастухе по имени Магнус. Он обнаружил однажды, что железный наконечник его палки и гвозди сапог притягиваются к чёрному камню. Этот камень стали называть «камнем Магнуса» или просто «магнитом», по названию местности, где добывали железную руду (холмы Магнезии в Малой Азии).

Магнитными явлениями интересовались ещё в Древнем Китае, так китайские мореплаватели в 11-ом веке уже пользовались морскими компасами.

Первое в Европе описание свойств природных магнитов сделал француз Пьер де Марикур. В 1269 году он отправил приятелю в Пикардию документ, который вошёл в историю науки как «Письмо о магните». В этом документе француз рассказывал о своих опытах с магнетитом, он заметил, что в каждом куске этого минерала есть две области, которые особенно сильно притягивают железо. Марикур усмотрел параллель между этими областями и полюсами небесной сферы, поэтому мы теперь говорим о южном и северном магнитном полюсе.

В 1600 году английский ученый Уильям Гильберт опубликовал труд «О магните, магнитных телах и большом магните - Земле». В этой книге Гильберт привёл все известные свойства природных магнитов, а также описал свои опыты с шаром из магнетита, с помощью которого он воспроизвёл основные черты земного магнетизма.

После Гильберта вплоть до начала 19-го века наука о магнетизме практически не развивалась.

Как объяснить то, что наука о магнетизме, в сравнении с учением об электричестве, развивалась очень медленно? Главная проблема заключалась в том, что магниты в то время существовали только в природе, их невозможно было получить в лабораторных условиях. Это очень сильно ограничивало возможности экспериментаторов.

Электричество находилось в более выгодном положении - его можно было получать и накапливать. Первый генератор статических зарядов в 1663 году построил бургомистр Магдебурга Отто фон Герике (см. Рис. 2)


Рис. 2. Немецкий физик Отто фон Герике и первый генератор статического электричества ()

В 1744 году немец Эвальд Георг фон Клейст, а в 1745 году голландец Питер ван Мушенбрук изобрели лейденскую банку - первый электрический конденсатор (см. Рис. 3), в то время появились и первые электрометры. В результате к концу 18-го века наука знала об электричестве намного больше, чем о магнетизме.


Рис. 3. Лейденская банка ()

Однако в 1800 году Алессандро Вольта изобрёл первый химический источник электрического тока - гальваническую батарею (вольтов столб) (см. Рис. 4). После этого открытие связи между электричеством и магнетизмом оказывалось делом неизбежным.

Стоит заметить, что открытие такой связи могло произойти через несколько лет после изобретения лейденской банки, однако французский учёный Лаплас не предал значение тому, что параллельные проводники при прохождению по ним тока в одном направлении притягиваются.

Рис. 4. Первая гальваническая батарея ()

В 1820 году датский физик Ханс Кристиан Эрстед, который вполне сознательно пытался получить связь между магнитными явлениями и электрическими, установил, что провод, по которому течёт электрический ток, отклоняет магнитную стрелку компаса. Первоначально Эрстед располагал проводник с током перпендикулярно стрелке - стрелка оставалась неподвижной. Однако на одной из лекций он расположил проводник параллельно стрелке, и она отклонилась.

Для того чтобы воспроизвести опыт Эрстеда необходимо к источнику тока через реостат (сопротивление) подключить проводник, возле которого расположена магнитная стрелка (см. Рис. 5). При протекании тока по проводнику наблюдается отклонение стрелки, это доказывает, что электрический ток в проводнике оказывает влияние на магнитную стрелку.


Рис. 5. Опыт Эрстеда ()

Задача 1

На рисунке 13 изображена линия магнитного поля проводника с током. Укажите направление тока.


Рис. 13 Иллюстрация к задаче

Для решения данной задачи воспользуемся правилом правой руки. Расположим правую руку так, чтобы четыре согнутых пальца совпадали с направлением магнитных линий, тогда большой палец укажет направление тока в проводнике (см. Рис. 14).


Рис. 14. Иллюстрация к задаче

Ответ

Ток течёт из точки B в точку A .

Задача 2

Укажите полюса источника электрического тока, которые замкнуты проводом (магнитная стрелка находится под проводом) (см. Рис.15). Изменится ли ответ, если такое же положение будет занимать стрелка, расположенная над проводом.

Рис. 15. Иллюстрация к задаче

Решение

Направление линий магнитного поля совпадают с направлением северного полюса магнитной стрелки (синяя часть). Следовательно, по правилу правой руки, располагаем руку так, чтобы четыре согнутых пальца совпадали с направлением магнитных линий и огибали провод, тогда большой палец укажет направление тока в проводнике. Ток протекает от «плюса» к «минусу», поэтому полюса источника электрического тока располагаются как на рисунке 16.

Рис. 16. Иллюстрация к задаче

Если бы стрелка располагалась над проводом, то получили бы противоположное течение тока и знаки полюсов были другими (см.Рис. 17).

Рис. 17. Иллюстрация к задаче

После оглашения результатов опыта французский физик и математик Анри Ампер решил заняться экспериментами по выявлению магнитных свойств электрического тока. Вскоре Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см.Рис. 6 б) если ток течёт в противоположные стороны - проводники отталкиваются (см. Рис. 6 а).

Рис. 6. Опыт Ампера ()

Из своих опытов Ампер сделал следующие выводы:

1) Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле;

2) Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле;

3) Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током;

4) Взаимодействие проводника с током и магнита, а также взаимодействие магнитов можно объяснить, предположив существование внутри магнита незатухающих молекулярных электрических токов.

Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц. Взаимодействия осуществляются с помощью магнитных полей этих частиц.

Магнитное поле - особая форма материи, которая существует вокруг движущихся заряженных частиц или тел и действует с некоторой силой на другие заряженные частицы или тела, движущиеся в этом поле.

Издавна для изучения магнитных явлений применяются магнитные стрелки (магниты в виде ромба). Если расположить вокруг магнита большое количество маленьких магнитных стрелок (на подставках, чтобы стрелки могли свободно вращаться), то они определённым образом соориентируются в магнитном поле магнита (см. Рис. 9). Оси магнитных стрелок будут проходить вдоль определённых линий. Такие линии называются линиями магнитного поля или магнитными линиями.

За направление линий магнитного поля принимают направление, на которое указывает северный полюс магнитной стрелки (см. Рис. 9).


Рис. 9. Расположение магнитных стрелок вокруг магнита ()

С помощью магнитных линий удобно изображать магнитные поля графически (см. Рис. 10)


Рис. 10. Изображение графически магнитных линий ()

Однако для определения направления магнитных линий не обязательно пользоваться магнитными стрелками.

Рис. 11. Расположение железных опилок вокруг проводника с током ()

Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис.11). Для определения направления магнитных линий в таком случае можно воспользоваться правилом буравчика - если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока. (см. Рис. 12). Также можно использовать правило правой руки - если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 13).

Рис. 11.Правило буравчика ()


Рис. 12. Правило правой руки ()

На этом уроке мы начали изучение магнетизма, обсудили историю изучения данного явления и узнали о линиях магнитного поля.

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.

Домашнее задание

  1. П. 58, вопросы 1-4, стр. 168, задание 40 (2). Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Clck.ru ().
  3. Интернет-портал Class-fizika.narod.ru ().

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал