Векторная диаграмма токов и напряжений как строить. Построение векторных диаграмм токов и напряжений

Главная / Электроснабжение

а) Понятие о векторах

На рис. 1-4 приведена кривая изменения переменного тока во времени. Ток сначала растет от нуля (при = 0°) до максимального положительного значения + I M (при = 90°), затем убывает, переходит через нуль (при = 180°), достигает максимального отрицательного значения - I M (при = 270°) и, наконец, возвращается к нулю (при = 360°). После этого весь цикл изменения тока повторяется.

Кривая изменения переменного тока во времени, построенная на рис. 1-4, называется синусоидой. Время Т, в течение которого происходит полный цикл изменения тока, соответствующий изменению угла до 360°, называется периодом переменного тока. Число периодов за 1 с называется частотой переменного тока. В промышленных установках и в быту в СССР и в других странах Европы используется главным образом переменный ток частотой 50 Гц. Этот ток 50 раз в секунду принимает положительное и отри цательное направление.

Изменение переменного тока во времени можно записать в следующем виде:

где i - мгновенное значение тока, т. е. значение тока в каждый момент времени; I м - максимальное значение тока; - угловая частота переменного тока, f= 50 Гц, = 314; - начальный угол, соответствующий моменту времени, с которого начинается отсчет времени (при t = 0).

Для частного случая, показанного на рис. 1-4,

Анализируя действие устройств релейной защиты и автоматики, необходимо сопоставлять токи и напряжения, складывать или вычитать их, определять углы между ними и производить другие операции. Пользоваться при этом кривыми, подобными приведенной на рис. 1-4, неудобно, поскольку построение синусоид тока и напряжения занимает много времени и не дает простого и наглядного результата. Поэтому для упрощения принято изображать токи и напряжения в виде отрезков прямых линий, имеющих определенную длину и направление, - так называемых векторов (ОА на рис. 1-4). Один конец вектора закреплен в точке О - начало координат, а второй вращается против часовой стрелки.

Мгновенное значение тока или напряжения в каждый момент времени определяется проекцией на вертикальную ось вектора, длина которого равна максимальному значению электрической величины тока или напряжения. Эта проекция будет становиться то положительной, то отрицательной, принимая максимальные значения при вертикальном расположении вектора.

За время Т, равное периоду переменного тока, вектор совершит полный оборот по окружности (360°), занимая последовательно положения и т. д. При частоте переменного тока 50 Гц вектор будет совершать 50 об/с.

Таким образом, вектор тока или напряжения - это отрезок прямой, равный по величине максимальному значению тока или напряжения, вращающийся относительно точки О против движения часовой стрелки со скоростью, определяемой частотой переменного тока. Зная положение вектора в каждый момент времени, можно определить мгновенное значение тока или напряжения в данный момент. Так, для положения вектора тока ОА, показанного на рис. 1-5, его мгновенное значение определяется проекцией на вертикальную ось, т. е.

На основании рис. 1-5 можно также сказать, что ток в данный момент времени имеет положительную величину. Однако это еще не дает полного представления о протекании процесса в цепи переменного тока, так как неизвестно, что значит положительный или отрицательный ток, положительное или отрицательное напряжение.

Для того чтобы векторные диаграммы токов и напряжений давали полную картину, их нужно увязать с фактическим протеканием процесса в цепи переменного тока, т. е. необходимо предварительно принять условные положительные направления токов и напряжений в рассматриваемой схеме.

Без выполнения этого условия, если не заданы положительные направления токов и напряжений, любая векторная диаграмма не имеет никакого смысла.

Рассмотрим простую однофазную цепь переменного тока, приведенную на рис. 1-6, а. От однофазного генератора энергия передается в активное сопротивление нагрузки R. Зададимся положительными направлениями токов и напряжений в рассматриваемой цепи.

За условное положительное направление напряжения и э д. с. примем направление, когда потенциал вывода генератора или нагрузки, связанного с линией, выше потенциала вывода, соединенного с землей. В соответствии с правилами, принятыми в электротехнике, положительное направление для э. д. с. обозначено стрелкой, направленной в сторону более высокого потенциала (от земли к линейному выводу), а для напряжения - стрелкой, направленной в сторону более низкого потенциала (от линейного вывода к земле).

Построим векторы э. д. с. и тока, характеризующие работу рассматриваемой цепи (рис. 1-6, б). Вектор э. д. с. произвольно обозначим вертикальной линией со стрелкой, направленной вверх. Для построения вектора тока запишем для цепи уравнение согласно второму закону Кирхгофа:

Поскольку знаки векторов тока и э. д. с. в выражении (1-7) совпадают, вектор тока будет совпадать с вектором э. д. с. и на рис. 1-6, б.

Здесь и в дальнейшем при построении векторов будем откладывать их по величине равными эффективному значению тока и напряжения, что удобно для выполнения различных математических операций с векторами. Как известно, эффективные значения тока и напряжения в раз меньше соответствующих максимальных (амплитудных) значений.

При заданных положительных направлениях тока и напряжения однозначно определяется и знак мощности. Положительной в рассматриваемом случае будет считаться мощность, направленная от шин генератора в линию:

так как векторы тока и э. д. с. на рис. 1-6, б совпадают.

Аналогичные соображения могут быть высказаны и для трехфазной цепи переменного тока, показанной па рис. 1-7,а.

В этом случае во всех фазах приняты одинаковые положительные направления, чему соответствует симметричная диаграмма токов и напряжений, приведенная на рис. 1-7, б. Отметим, что симметричной называется такая трехфазная система векторов, когда все три вектора равны но величине и сдвинуты относительно друг друга на угол 120°.

Вообще говоря, совсем не обязательно принимать одинаковые положительные направления во всех фазах. Однако принимать разные положительные направления в разных фазах неудобно, так как пришлось бы изображать несимметричную систему векторов при работе электрической цепи в нормальном симметричном режиме, когда все три фазы находятся в одинаковых условиях.

б) Операции с векторами

Когда мы рассматриваем только одну кривую тока или напряжения, начальное значение угла, с которого начинается отсчет или, иначе говоря, положение вектора на диаграмме, соответствующее начальному моменту времени, может быть принято произвольным. Если же одновременно рассматриваются два или несколько токов и напряжений, то, задавшись начальным положением на диаграмме одного из векторов, мы тем самым уже определяем положение всех других векторов.

Все три вектора фазных напряжений показанные на рис. 1-7, б, вращаются против часовой стрелки с одинаковой скоростью, определяемой частотой переменного тока. При этом они пересекают вертикальную ось, совпадающую с направлением вектора на рис. 1-7,б, поочередно с определенной последовательностью, а именно которая называется чередованием фаз напряжения (или тока).

Для того чтобы определить взаимное расположение двух векторов, обычно говорят, что один из них опережает или отстает от другого. При этом опережающим считается вектор, который при вращении против часовой стрелки раньше пересечет вертикальную ось. Так, например, можно сказать, что вектор напряжения на рис. 1-7, б опережает на угол 120°, или, с другой стороны, вектор отстает от вектора на угол 120°. Как видно из рис. 1-7, выражение «вектор отстает на угол 120°» равноценно выражению «вектор опережает на угол 240°».

При анализе разных электрических схем возникает необходимость складывать или вычитать векторы тока и напряжения. Сложение векторов производится геометрическим суммированием по правилу параллелограмма, как показано на рис. 1-8, а, на котором построена сумма токов

Так как вычитание - действие обратное сложению, очевидно, что для определения разности токов (например, достаточно к току прибавить вектор, обратный

Вместе с тем на рис. 1-8, а показано, что вектор разности токов можно построить проще, соединив линией концы векторов При этом стрелка вектора разности токов направлена в сторону первого вектора, т. е.

Совершенно аналогично строится векторная диаграмма междуфазных напряжений, например (рис. 1-8, б).

Очевидно, что положение вектора на плоскости определяется его проекциями на две любые оси. Так, например, для того чтобы определить положение вектора ОА (рис. 1-9), достаточно знать его проекции на взаимно перпендикулярные оси

Отложим на осях координат проекции вектора и и восстановим из точек перпендикуляры к осям. Точка пересечения этих перпендикуляров и есть точка А - один конец вектора, вторым концом которого является точка О - начало координат.

в) Назначение векторных диаграмм

Работникам, занимающимся проектированием и эксплуатацией релейной защиты, весьма часто приходится использовать в своей работе так называемые векторные диаграммы - векторы токов и напряжений, построенные на плоскости в определенном сочетании, соответствующем электрическим процессам, происходящим в рассматриваемой схеме.

Векторные диаграммы токов и напряжений строятся при расчете коротких замыканий, при анализе токораспре-деления в нормальном режиме.


Анализ векторных диаграмм токов и напряжений является одним из основных, а в ряде случаев единственным способом проверки правильности соединения цепей тока и напряжения и включения реле в схемах дифференциальных и направленных защит.

По сути дела, построение векторной диаграммы целесообразно во всех случаях, когда к рассматриваемому реле подаются две или больше электрических величин: разность токов в максимальной токовой или дифференциальной защите, ток и напряжение в реле направления мощности или в направленном реле сопротивления. Векторная диаграмма позволяет сделать заключение о том, как рассматриваемая защита будет работать при коротком замыкании, т. е. оценить правильность ее включения. Взаимное расположение векторов токов и напряжений на диаграмме определяется характеристикой рассматриваемой цепи, а также условно принятыми положительными направлениями токов и напряжений.

Для примера рассмотрим две векторные диаграммы.

На рис. 1-10, а показана однофазная цепь переменного тока, состоящая из генератора и последовательно соединенных емкостного активного и индуктивного сопротивлений (примем, что индуктивное сопротивление больше емкостного x L > x C). Положительные направления токов и напряжений, так же как и в случаях, рассмотренных выше, обозначены на рис. 1-10, а стрелками. Построение векторной диаграммы начнем с вектора э. д. с, который расположим на рис. 1-10, б вертикально. Величина тока, проходящего в рассматриваемой цепи, определится из следующего выражения:

Поскольку в рассматриваемой цепи имеются активные и реактивные сопротивления, причем x L > x C , вектор тока отстает от вектора напряжения на угол :

На рис. 1-10, б построен вектор отстающий от вектора на угол 90°. Напряжение в точке n определяется разностью векторов . Напряжение в точке m определится аналогично:


г) Векторные диаграммы при наличии трансформации

При наличии в электрической цепи трансформаторов необходимо ввести дополнительные условия, для того чтобы сопоставлять векторные диаграммы токов и напряжений на разных сторонах трансформатора. Положительные направления токов при этом следует задавать с учетом полярности обмоток трансформатора.

В зависимости от направления намотки обмоток трансформатора взаимное направление токов в них меняется. Для того чтобы определять направление токов в обмотках силового трансформатора и сопоставлять их между собой, обмоткам трансформатора дают условные обозначения «начало» и «конец».

Нарисуем схему, приведенную на рис. 1-6, только между источником э. д. с. и нагрузкой включим трансформатор (рис. 1-12, а). Обозначим начала обмоток силового трансформатора буквами А и а, концы - X и х. При этом следует иметь в виду, что «начало» одной из обмоток принимается произвольно, а второй - определяется на основании условных положительных направлений токов, заданных для обеих обмоток трансформатора.На рис. 1-12, а указаны положительные направления токов в обмотках силовых трансформаторов. В первичной обмотке положительным считается направление тока от «начала» к «концу», а во вторичной - от «конца» к «началу».

В результате при таких положительных направлениях направление тока в сопротивлении нагрузки остается таким же, что и до включения трансформатора (см. рис. 1-6 и 1-12).

где - магнитные потоки в магнитопроводс трансформатора, а - создающие эти потоки намагничивающие силы (н. с).

Из последнего уравнения

Согласно равенству (1-11) векторы имеют одинаковые знаки и, следовательно, будут совпадать по направлению (рис. 1-12, б).

Принятые положительные направления токов в обмотках трансформатора удобны тем, что векторы первичного и

Вторичного токов на векторной диаграмме совпадают по направлению (рис. 1-12, б). Для напряжений также удобно принять такие положительные направления, чтобы векторы вторичного и первичного напряжений совпадали, как показано на рис. 1-12.

В рассматриваемом случае имеет место соединение трансформатора по схеме 1/1-12. Соответственно для трехфазного трансформатора схема соединений и векторная диаграмма токов и напряжений показаны на рис. 1-14.

На рис. 1-15, б построены векторные диаграммы напряжений, соответствующие схеме соединения трансформатора

На стороне высшего напряжения, где обмотки соединены в звезду, междуфазные напряжения в раз превышают фазные напряжения. На стороне же низшего напряжения, где обмотки соединены в треугольник, междуфазные и фазные напряжения равны. Междуфазные напряжения стороны низшего напряжения отстают на 30° от аналогичных междуфазных напряжений стороны высшего напряжения, что и соответствует схеме соединений

Для рассматриваемой схемы соединений обмоток трансформатора можно построить и векторные диаграммы токов, проходящих с обеих его сторон. При этом следует иметь в виду, что на основании принятых нами условий определяются только положительные направления токов в обмотках трансформатора. Положительные же направления токов в линейных проводах, соединяющих выводы обмоток низшего напряжения трансформатора с шинами, могут быть приняты произвольно независимо от положительных направлений токов, проходящих в треугольнике.

Так, например, если принять положительные направления токов в фазах на стороне низшего напряжения от выводов, соединенных в треугольник, к шинам (рис. 1-15, а), можно записать следующие равенства:

Соответствующая векторная диаграмма токов показана на рис. 1-15, в.


Аналогично можно построить векторную диаграмму токов и для случая, когда положительные направления токов приняты от шин к выводам треугольника (рис. 1-16, а). Этому случаю соответствуют следующие равенства:

и векторные диаграммы, приведенные на рис. 1-16, б. Сравнивая диаграммы токов, приведенные на рис. 1-15, в и 1-16, б, можно сделать вывод, что векторы фазных токов, проходящих в проводах, соединяющих выводы обмоток низ-

Шего напряжения трансформатора и шины, находятся в про-тивофазе. Конечно, как те, так и другие диаграммы верны.

Таким образом, при наличии в схеме обмоток, соединенных в треугольник, необходимо задаваться положительными направлениями токов как в самих обмотках, так и в линейных проводах, соединяющих треугольник с шинами.

В рассматриваемом случае при определении группы соединений силового трансформатора удобно за положительные принимать направления от выводов низшего напряжения к шинам, так как при этом векторные диаграммы токов совпадают с принятым обозначением групп соединения силовых трансформаторов (сравните рис. 1-15, б и в). Аналогично могут быть построены векторные диаграммы токов и для других групп соединения силовых трансформаторов. Сформулированные выше правила построения векторных диаграмм токов и напряжений в схемах с трансформаторами действительны и для измерительных трансформаторов тока и напряжения.

Рассмотрен для случая с исправным нулевым проводом. Векторные диаграммы напряжений и токов даны на рисунках 15 и 16; на рисунке 17 дана совмещенная диаграмма токов и напряжений

1. Строятся оси комплексной плоскости: действительных величин (+1) - горизонтально, мнимых величин (j) - вертикально.

2. Исходя из значений модулей токов и напряжений и размеров полей листов, отведеных для построения диаграмм, выбираются масштабы тока mI и напряжения mU. При использовании формата А4 (размеры 210х297 мм) при наибольших модулях (см. табл. 8) тока 54 А и напряжения 433 В приняты масштабы: mI = 5 А/см, mU = 50 В/см.

3. С учетом принятых масштабов mI и mU определяется длина каждого вектора, если диаграмма строится с использованием показательной формы его записи; при использовании алгебраической формы находятся длины проекций векторов на оси действительных и мнимых величин, т.е. длины действительной и мнимой частей комплекса.

Например, для фазы А:

Длина вектора тока / ф.А / = 34,8 А/ 5 А/см = 6,96 см; длина его действительной части

I ф.А = 30 А/ 5 А/см = 6 см,

длина его мнимой части

I ф.А = -17,8 А/5 А/см = - 3,56 см;

Длина вектора напряжения / А нагр./ = 348 В/ 50 В/см = 6,96 см; длина его действительной части

U А нагр. = 340,5 В/ 50 В/см = 6,8 см;

длина его мнимой части

U Анагр. = 37,75 В/ 50 В/см = 0,76 см.

Результаты определения длин векторов, их действительных и мнимых частей отражены в таблице 9.

Таблица 9 - Длины векторов тока и напряжения, их действительных и мнимых частей для случая неповрежденного нулевого провода.

Величина Масштаб, 1/см Длина вектора, см Длина действительной части, см Длина мнимой части, см
Напряжения фаз сети U А 50 В/см 7,6 7,6
7,6 - 3,8 - 6,56
7,6 - 3,8 6,56
Напряжения фаз нагрузки U Анагр. 50 В/см 6,96 6,8 0,76
UВ нагр. 7,4 - 4,59 - 5,8
UС нагр. 8,66 -4,59 7,32
U0 1,08 0,79 - 0,76

Продолжение таблицы 9

Токи фаз нагрузки I ф.А 5 А/см 6,96 6.0 - 3,56
I ф.В 7,4 1,87 - 7,14
I ф.С 3,13 0,1 3,12
I 0 10,8 7,9 - 7,6

4. Построение векторной диаграммы напряжений.

4.1 На комплексной плоскости строятся векторы фазных напряжений питающей сети А, В, С; соединив их концы, получают векторы линейных напряжений АВ, ВС, СА. Затем строятся векторы фазных напряжений нагрузки А нагр., В нагр., С нагр. Для их построения можно использовать обе формы записи комплексов токов и напряжений.

Например, вектор А нагр. строится по показательной форме следующим образом: от оси +1 под углом 6 10 , т.е. против часовой стрелки, откладывается отрезок длиной 6,96 см; по алгебраической форме его можно построить, отложив по оси +1 отрезок длиной 6,81 см, а по оси + j отрезок длиной 0,76 см, концы этих отрезков являются координатами конца вектора А нагр.

4.2 Т.к. линейные напряжения нагрузки заданы питающей сетью, для определения положения нейтрали нагрузки необходимо выполнить параллельный перенос векторов фазных напряжений нагрузки А нагр., В нагр., С нагр. так, чтобы их концы совпали с концами фазных напряжений питающей сети.

Точка 0, в которой окажутся их начала, есть нейтраль нагрузки. В этой точке находится конец вектора напряжения смещения нейтрали 0, его начало расположено в точке 0. Этот вектор можно также построить, используя данные таблицы 9.

5. Построение векторной диаграммы токов.

5.1 Построение векторов фазных токов нагрузки ф.А, ф.В, ф.С подобно построению векторов фазных напряжений.

5.2 Сложением векторов фазных токов находится вектор тока в нулевом проводе 0; его длина и длины его проекций на оси должны совпасть с указанными в таблице 8.

Векторные диаграммы токов и напряжений для случая обрыва нулевого провода строятся аналогично.

Следует выполнить анализ результатов расчета и построения векторных диаграмм и сделать выводы о влиянии несимметрии нагрузки на величину ее фазных напряжений и на напряжение нейтрали; особое внимание необходимо обратить на последствия обрыва нулевого провода сети при несимметричной нагрузке.

Примечание . Допускается совмещение диаграмм токов и напряжений при условии их выполнения разными цветами.


Рисунок 15. Векторная диаграмма напряжений

Рисунок 16. Векторная диаграмма токов.

Рисунок 17. Совмещенная векторная диаграмма напряжений и токов.


Рисунок 25- Векторная диаграмма токов в точке КЗ

Рисунок 26-Векторная диаграмма токов в сечении А-А




Рисунок 27- Векторная диаграмма напряжений в сечении А-А




Рисунок 28- Векторная диаграмма токов в сечении В-В


Рисунок 29- Векторная диаграмма напряжений сечении В-В

Расчет периодической слагающей тока КЗ методом типовых кривых.

Задача III. Расчет периодической слагающей тока трехфазного КЗ

Методом типовых кривых.

При определении периодического тока трехфазного КЗ составляется схема прямой последовательности для начального момента времени, в которой генераторы представляются сверхпереходными параметрами; нагрузки не учитываются (рисунок 2). Общая методика расчета описана в . После эквивалентирования получена промежуточная схема, (рисунок 30) , которая преобразуется к лучевому виду относительно точки КЗ (рисунок 31). При этом используются коэффициенты токораспределения .

В процессе упрощений схемы замещения получены следующие сопротивления: Х 15 =Х 1 +Х 2 /2=0+0,975425/2=0,4877125 о.е.

Х 16 =Х 4 +Х 5 =0,84+1,53=2,37 о.е.

Рисунок 30- Промежуточная схема Рисунок 31- Расчетная схема

Х 17 =Х 6 +Х 7 =0,88+0=0,88 о.е.

Х 18 =Х 11 +Х 9 /2=0+1,240076/2=0,620038 о.е.

Х 19 =Х 12 +Х 13 =2,117202+0,192308=2,30951 о.е.

Х ЭК =Х 18 *Х 19 /(Х 18 +Х 19)=0,620038*2,30951/(0,620038+2,30951)=0,488807 о.е.

С 1 =Х ЭК /Х 18 =0,488807/0,620038=0,78835.

С 2 =Х ЭК /Х 19 =0,488807/2,30951=0,21165.

Х 20 =(Х эк +Х 17) /С 1 =1,736294 о.е.

Х 21 =(Х эк +Х 17) /С 2 =6,467324 о.е.

Получена схема, изображенная на рисунке 31. Далее находятся начальные периодические токи в месте КЗ.

I " Г =Е 2 /Х 16 *I Б =1,13/2,27*2,5102=1,196846 кА.

I " С1 =Е 1 /Х 15 *I Б =1/0,4877125*2,5102=5,146885 кА.

I " С2 =Е 3 /Х 20 *I Б =1/1,736294*2,5102=1,445723 кА.

I " С3 =Е 4 /Х 21 *I Б =1/6,467324*2,5102=0,388136 кА.

Токи от систем постоянны. Периодический ток, по типовым кривым, определяется для синхронного генератора с тиристорной или высокочастотной системой возбуждения. В соответствии с методикой рассчитывается номинальный ток синхронного генератора и далее определяется номер типовой кривой.

I ГН = S ГН / *U Б = 100/( *0,85*230) = 0,295320 кА;

I * ПО =I Г2 " /I ГН =1,196846/0,295320 = 4,05»4.

Так как отношение I Г2 " /I ГН » 4,то по выбирается 4 типовая кривая:

I КЗПОСТ =I " С2 +I " С3 +I " С1 =5,1468885+1,445723+0,388136=6,980748 кА

t, сек 0,1 0,2 0,3 0,4 0,5
I Г t /I ” Г, о.е 0,85 0,78 0,755 0,75 0,745
I Г t , кА 1,1968 1,017 0,933 0,903 0,897 0,891
Суммарный I К t , кА 8,1775 7,9977 7,9137 7,8837 7,8777 7,872

В качестве примера рассмотрим нахождение периодического тока для момента времени 0,1 сек. По кривой 4 для этого момента времени определяется отношение In,t,г/Inoг=0,85.

Определяется действующее значение периодической составляющей тока КЗ от генератора: In,t,г=0,85 * Inо*I НОМ =0,85 * 4,05*0,2953 = 1,017 кА.

Суммарный периодический ток при К (3) в узле К с учетом типовых кривых изображен на рисунке 32.


Рисунок 32- График зависимости суммарного периодического тока от времени КЗ Iкt=f(t)

Задача IV. Расчет периодической слагающей тока несимметричного КЗ методом типовых кривых.

Для определения периодических токов КЗ при К (1.1) методом типовых кривых составляется схема замещения обратной последовательности без учета нагрузок (рисунок 33). Далее производится упрощение схемы замещения и получение эквивалентного сопротивления обратной последовательности. Последовательность упрощений приведена ниже и на рисунках 34-37.

Х 15 =Х 1 +Х 2 /2=0+0,975425/2=0,487713 о.е. Х 16 =Х 4 +Х 5 =0,84+1,87=2,71 о.е.

Х 17 =Х 6 +Х 7 =0+0,88=0,88 о.е. Х 18 =Х 11 +Х 9 /2=0+1,240076/2=0,620038 о.е.

Х 19 =Х 12 +Х 13 =2,117202+0,230769=2,347971 о.е.

Х 20 =Х 15 *Х 16 /(Х 15 +Х 16)=0,487713*2,71/(0,487713+2.71)=0,413327 о.е.

Х 22 =Х 17 +Х 21 =0,88+0,490508=1,370508 о.е. Х ЭК2 =Х 20 *Х 22 /(Х 20 +Х 22)=0,413327*1,370508/ /(0,413327+1,370508)=0,317556 о.е.


Рисунок 33- Схема замещения обратной последовательности

Рисунок 34- Упрощение схемы №1

Рисунок 35- Упрощение схемы №2

Рисунок 36- Упрощение схемы №3

Рисунок 37- Эквивалентная схема замещения обратной

Последовательности

Аналогично составим схему замещения нулевой последовательности (рисунок 38). Порядок упрощения схемы замещения приведен ниже на рисунках 39-42.


Рисунок 38 –Расчетная схема замещения нулевой последовательности

Х 13 =Х 1 +Х 2 /2=0+4,585/2=2,292 о.е. Х 14 =Х 10 +Х 9 /2=0+6,82/2=3,41 о.е.

Х 15 =Х 11 +Х 12 =7,41+0,769= 8,18 о.е. Х 16 =Х 13 *Х 4 /(Х 13 +Х 4)=2,29225*0,84/(2,29+0,84)=0,615 о.е.

Х 18 =Х 6 +Х 17 =0,88+1,338581=2,219 о.е.

Х 17 =1 / (1/Х 7 +1/Х 15 +1/Х 14)=1 /(1/3,016+1/8,18+1/3,41)=1,34 о.е.

Рисунок 39- Упрощение схемы №1

Рисунок 40- Упрощение схемы №2

Рисунок 41 - Упрощение схемы № 3

Рисунок 42- Эквивалентная схема замещения нулевой

Последовательности

Для решения поставленной задачи используются эквивалентные данные по прямой последовательности из предыдущей задачи. С учетом особенностей К (1.1) получаем схему, приведенную на рисунке 43. Эта схема приводится к виду, изображенному на рисунке 44.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал