Электростанция на солнечных батареях своими руками. Как сделать солнечную батарею своими руками: способы сборки и монтажа солнечной панели Как собрать солнечную батарею в домашних условиях

Главная / Электродвигатели

Солнечные батареи - источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками - затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Галерея изображений

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности - количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей .

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать , который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% - для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока - постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Гелиостанции - это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Солнце является неистощимым источником энергии. Люди давно научились тому, как эффективно пользоваться ей. Мы не будем вдаваться в физику процесса, а посмотрим, как можно использовать этот бесплатный энергетический ресурс. Поможет нам в этом самодельная солнечная панель.

Принцип действия

Что представляет собой солнечный элемент? Это специальный модуль, который состоит из огромного количества самых элементарных фотодиодов. Данные полупроводниковые элементы выращивали с использованием специальных технологий в условиях завода на пластинах из кремния.

К сожалению, такие устройства отнюдь не дешевые. Большинство людей не может их приобрести, однако на этот случай есть множество способов изготовить солнечные панели своими руками. И эта батарея вполне сможет создать конкуренцию коммерческим образцам. Причем цена ее будет совсем не сопоставима с тем, что предлагают магазины.

Постройка батареи из кремниевых пластин

Комплект для включает 36 кремниевых пластинок. Они предлагаются с размерами 8*15 сантиметров. Общие показатели мощности составят порядка 76 Вт. Также понадобятся провода для того, чтобы соединить элементы между собой, и диод, который будет выполнять функцию блокировки.

Одна кремниевая пластина выдает 2,1 Вт и 0,53 В при токе до 4 А. Соединять пластины необходимо только последовательно. Лишь таким образом наш источник энергии сможет выдать 76 Вт. На лицевой стороне нанесены две дорожки. Это «минус», а «плюс» расположен на тыльной стороне. Каждую из панелей необходимо расположить с зазором. Должно получиться девять пластин в четыре ряда. При этом второй и четвертый ряды необходимо развернуть наоборот относительно первого. Это требуется для того, чтобы все удобно соединилось в одну цепь. Обязательно нужно учесть диод. Он позволяет предотвратить разряд накопительного аккумулятора в ночное время суток либо в облачный день. «Минус» диода нужно соединить с «плюсом» батареи. Для заряда аккумулятора понадобится специальный контроллер. При помощи инвертора можно получить обычное бытовое напряжение в 220 В.

Сборка солнечных панелей своими руками

Самый малый коэффициент преломления света - у плексигласа. Он и будет использоваться в качестве корпуса. Это достаточно недорогой материал. А если нужно еще дешевле, тогда можно приобрести оргстекло. В худшем случае можно использовать поликарбонат. Но он мало подходит для корпуса по своим характеристикам. В магазинах можно отыскать специальный поликарбонат с покрытием, которое защищено от конденсата. Он позволяет также обеспечить батарее высокий уровень защиты от тепла. Но это еще не все элементы, из которых будет состоять солнечная панель. Своими руками стекло с хорошей прозрачностью несложно подобрать, это одна из основных составляющих конструкции. Кстати, подойдет даже обычное стекло.

Изготовление рамки

При монтаже кремниевые кристаллы необходимо крепить на небольшом расстоянии. Ведь нужно учесть различные атмосферные воздействия, которые могут повлиять на изменения основы. Так, желательно, чтобы расстояние составляло около 5 мм. В результате размер готовой конструкции составит где-то 835*690 мм.

Изготавливается солнечная панель своими руками с использованием профиля из алюминия. Он имеет максимальное сходство с фирменными изделиями. При этом самодельная батарея более герметична и прочна.

Для сборки понадобится уголок из алюминия. Из него делается заготовка для будущей рамки. Размеры - 835*690 мм. Для того чтобы скрепить профили между собой, необходимо заранее сделать технологические отверстия.

Внутреннюю часть профиля следует промазать герметиком на основе силикона. Наносить его нужно очень внимательно, чтобы все места были промазаны. От того, насколько качественно он будет нанесен, полностью зависит эффективность и надежность, которой будет обладать солнечная панель.

Своими руками теперь нужно положить в рамку из профиля лист из заранее подобранного прозрачного материала. Это может быть либо что-нибудь еще. Важный момент: силиконовый слой должен просохнуть. Это нужно учесть обязательно, иначе на кремниевых элементах появится пленка.

На следующем этапе прозрачный материал необходимо хорошо прожать и зафиксировать. Чтобы крепление получилось максимально надежным, следует воспользоваться метизами. Закрепим стекло по периметру и с четырех углов. Теперь солнечная панель, своими руками изготавливаемая, практически готова. Осталось лишь соединить кремниевые элементы между собой.

Пайка кристаллов

Теперь нужно как можно аккуратнее проложить проводник на пластинку из кремния. Далее наносим флюс и припой. Чтобы было удобнее работать, можно зафиксировать проводник с одной стороны чем-нибудь.

В этом положении аккуратно подпаиваем проводник к контактной площадке. Не давите на кристалл паяльником. Он очень хрупкий, вы можете его сломать.

Последние сборочные операции

Если для вас изготовление солнечных панелей своими руками впервой, то лучше использовать специальную разметочную подложку. Она поможет расположить необходимые элементы максимально ровно на необходимом расстоянии. Для того чтобы правильно отрезать провода нужной длины, соединяющие отдельные элементы, следует учесть, что проводник должен припаиваться к контактной площадке. Она немного вынесена за край кристалла. Если сделать предварительные расчеты, то выяснится, что провода должны быть по 155 мм.

Когда будете собирать все это в единую конструкцию, лучше взять лист фанеры или оргстекла. Для удобства кристаллы лучше предварительно расположить горизонтально и зафиксировать. Это легко делается с помощью крестиков для укладки плитки.

После того как вы соедините все элементы между собой, на каждый кристалл с обратной стороны наклейте двухсторонний строительный скотч. Нужно лишь немного прижать заднюю панель, и все кристаллы с легкостью перенесутся на базу.

Такой тип крепления никак ни герметизируется дополнительно. Кристаллы могут расширяться при высоких температурах, но это не страшно. Герметизировать нужно лишь отдельные части.

Теперь при помощи необходимо закрепить все шины и само стекло. Прежде чем заклеивать и полностью собирать батарею, желательно протестировать ее.

Герметизация

Если у вас обычный силиконовый герметик, то не нужно полностью заливать им кристаллы. Так можно исключить риск повреждения. Для заливки этой конструкции нужен не силикон, а эпоксидная смола.

Вот так просто и непринужденно можно получать электрическую энергию почти даром. Теперь рассмотрим, как еще можно сделать солнечные панели своими руками.

Экспериментальная батарея

Эффективные системы для преобразования солнечной энергии требуют наличия фабрик огромных размеров, особого ухода за ними и серьезной суммы денег.

Давайте попробуем изготовить что-то самостоятельно. Все, что понадобится для эксперимента, легко можно купить в хозяйственном магазине или найти на вашей кухне.

Солнечная панель своими руками из фольги

Для сборки понадобится медная фольга. Ее без труда можно найти в гараже или на крайний случай легко приобрести в любом хозяйственном магазине. Для сборки батареи нужно 45 квадратных сантиметров фольги. Также следует купить два «крокодильчика» и маленький мультиметр.

Чтобы получить рабочий солнечный элемент, желательно иметь электрическую печку. Нужно не меньше 1100 Ватт мощности. Она должна накалиться до ярко-красного цвета. Еще подготовьте обычную пластиковую бутылку без горлышка и пару столовых ложек соли. Достаньте из гаража дрель с абразивной насадкой и лист металла.

Приступаем к работе

Первым делам отрежем часть медной фольги такого размера, чтобы она полностью ложилась на электроплитку. От вас потребуется вымыть руки, чтобы на меди не оставалось жирных пятен от пальцев. Медь тоже желательно помыть. Чтобы убрать покрытие с медного листа, воспользуйтесь наждаком.

из медной фольги

Далее очищенный лист кладем на плитку и включаем ее на самый максимум возможностей. Когда плитка начнет греться, вы сможете наблюдать появление на медном листе красивых оранжевых пятен. Затем цвет изменится на черный. Необходимо подержать медь порядка получаса на раскаленной докрасна плитке. Это очень важный момент. Так, толстый слой оксида легко отслаивается, а тонкий будет липнуть. После того как пройдет полчаса, уберите с плиты медь и дайте ей остыть. Вы сможете наблюдать, как от фольги отваливаются куски.

Когда все остынет, оксидная пленка пропадет. Вы сможете легко очистить при помощи воды большую часть черного оксида. Если что-то не отдирается, не стоит и пытаться. Главное - не деформируйте фольгу. В результате деформации можно повредить тонкий слой оксида, он очень нужен для эксперимента. Если его не будет, солнечная панель, своими руками изготовленная, не будет работать.

Сборка

Второй кусок фольги отрежьте по тем же размерам, что и первый. Далее очень аккуратно требуется согнуть две части так, чтобы они вошли в пластиковую бутылку, но при этом не касались друг друга.

Затем цепляйте «крокодильчики» к пластинам. Провод от "нежареной" фольги - к "плюсу", провод от "жареной" - к "минусу". Теперь берем соль и горячую воду. Соль размешивайте до полного растворения. Выльем раствор в нашу бутылку. И теперь можно наблюдать на плоды трудов. Эта самодельная солнечная панель, своими руками сделанная, может быть в дальнейшем немного усовершенствована.

Другие способы использования солнечной энергии

Солнечную энергию уже как только не используют. В космосе она запитывает на Марсе от Солнца питается знаменитый марсоход. А в Соединенных Штатах Америки от Солнца работают дата-центры Google. В тех местах нашей страны, где отсутствует электричество, люди могут посмотреть новости по телевизору. Все это благодаря Солнцу.

А еще данная энергия позволяет обогревать дома. Воздушно-солнечная панель своими руками очень просто изготавливается из пивных банок. Они накапливают тепло и отдают его в жилое помещение. Это эффективно, бесплатно и доступно.

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал