Теория строения орг веществ. Урок-лекция "Теория химического строения А.М

Главная / Автоматические выключатели

Химия - это наука, которая дает нам все то разнообразие материалов и предметов быта, которым мы, не задумываясь, пользуемся каждый день. Но чтобы прийти к открытию такого многообразия соединений, которое известно сегодня, многим химикам пришлось пройти сложный научный путь.

Огромный труд, многочисленные удачные и безуспешные эксперименты, колоссальная теоретическая база знаний - все это привело к формированию различных областей промышленной химии, позволило синтезировать и использовать современные материалы: резины, пластики, пластмассы, смолы, сплавы, различные стекла, силиконы и так далее.

Одним из самых известных, заслуженных ученых-химиков, внесших неоценимый вклад в развитие именно органической химии, был русский человек Бутлеров А. М. Его труды, заслуги и результаты работ мы и рассмотрим кратко в данной статье.

Краткая биография

Дата рождения ученого - сентябрь 1828 года, число в разных источниках неодинаковое. Он был сыном подполковника Михаила Бутлерова, мать потерял достаточно рано. Все детство прожил в родовом имении деда, в деревне Подлесная Шентала (ныне район республики Татарстан).

Учился в разных местах: сначала в закрытой частной школе, затем в гимназии. Позже поступил в Казанский университет на отделение физики и математики. Однако несмотря на это больше всего интересовался химией. Будущий автор теории строения органических соединений остался по окончании учебы на месте в качестве преподавателя.

1851 год - время защиты первой диссертационной работы ученого по теме "Окисление органических соединений". После блестящего выступления ему предоставили возможность управления всей химией в своем университете.

Скончался ученый в 1886 году там, где провел детство, в родовом имении деда. В фамильной местной часовне он и был захоронен.

Вклад ученого в развитие химических знаний

Теория строения органических соединений Бутлерова - это, безусловно, его основной труд. Однако не единственный. Именно этот ученый первым создал русскую школу химиков.

Причем из ее стен вышли такие ученые, которые в дальнейшем имели большой вес в развитии всей науки. Это следующие люди:

  • Марковников;
  • Зайцев;
  • Кондаков;
  • Фаворский;
  • Коновалов;
  • Львов и другие.

Работы по органической химии

Таких трудов можно назвать множество. Ведь Бутлеров практически все свободное время проводил в лаборатории своего университета, осуществляя различные эксперименты, делая выводы и заключения. Именно так и родилась теория органических соединений.

Есть несколько особенно емких работ ученого:

  • им был создан доклад на конференцию на тему "О химическом строении вещества";
  • диссертационный труд "Об эфирных маслах";
  • первая научная работа "Окисление органических соединений".

Перед ее формулировкой и созданием автор теории строения органических соединений долго изучал работы других ученых из разных стран, исследовал их труды, в том числе и экспериментальные. Только потом, обобщив и систематизировав полученные знания, он отразил все выводы в положениях своей именной теории.

Теория строения органических соединений А. М. Бутлерова

XIX век знаменуется бурным развитием практически всех наук, в том числе и химии. В частности, продолжают копиться обширные открытия по углероду и его соединениям, поражают всех своим многообразием. Однако никто не осмеливается систематизировать и упорядочить весь этот фактический материал, привести к общему знаменателю и выявить единые закономерности, на которых все построено.

Первым это сделал Бутлеров А. М. Именно ему принадлежит гениальная теория химического строения органических соединений, о положениях которой он рассказал массово на немецкой конференции химиков. Это стало началом новой эпохи в развитии науки, органическая химия встала на

Сам ученый шел к этому постепенно. Он провел множество опытов и предсказал существование веществ с заданными свойствами, открыл некоторые типы реакций и увидел за ними будущее. Много изучал труды своих коллег и их открытия. Только на фоне этого путем тщательного и кропотливого труда ему удалось-таки создать свой шедевр. И теперь теория строения органических соединений в данном - практически то же самое, что и периодическая система в неорганической.

Открытия ученого перед созданием теории

Какие были сделаны открытия и даны теоретические обоснования ученым перед тем, как появилась теория строения органических соединений А. М. Бутлерова?

  1. Отечественный гений первым синтезировал такие органические вещества, как уротропин, формальдегид, йодистый метилен и другие.
  2. Синтезировал из неорганики сахароподобное вещество (третичный спирт), тем самым нанеся очередной удар по теории витализма.
  3. Предсказал будущее за реакциями полимеризации, назвав их лучшими и перспективными.
  4. Изомерия объяснена была впервые только им.

Конечно, это только основные вехи его работ. На самом деле, многолетний кропотливый труд ученого можно описывать долго. Однако самой значимой на сегодня стала все-таки теория строения органических соединений, о положениях которой и поговорим дальше.

Первое положение теории

В 1861 году великий русский ученый на съезде химиков в городе Шпейере делится с коллегами своими взглядами на причины строения и многообразия органических соединений, выражая все это в форме положений теории.

Самый первый пункт следующий: все атомы в пределах одной молекулы соединены в строгой последовательности, которая определяется их валентностью. При этом атом углерода проявляет показатель валентности, равный четырем. Кислород имеет значение данного показателя, равное двум, водород - единице.

Подобную особенность он предложил называть химическим Позже были приняты обозначения выражения его на бумаге при помощи графических полных структурных, сокращенных и молекулярных формул.

Сюда же относится и явление соединения углеродных частиц друг с другом в бесконечные цепи разного строения (линейные, циклические, разветвленные).

В общем, теория строения органических соединений Бутлерова своим первым положением определила значимость валентности и единой формулы для каждого соединения, отражающей свойства и поведение вещества во время реакций.

Второе положение теории

В данном пункте было дано объяснение многообразию органических соединений в мире. Опираясь на соединения углеродов в цепи, ученый высказал мысль о том, что в мире присутствуют неодинаковые соединения, имеющие различные свойства, но при этом совершенно идентичные по молекулярному составу. Другими словами, существует явление изомерии.

Этим положением теория строения органических соединений А. М. Бутлерова не просто пояснила суть изомеров и изомерии, но и сам ученый практическим опытным путем все подтвердил.

Так, например, он синтезировал изомер бутана - изобутан. Затем предсказал для пентана существование уже не одного, а трех изомеров, исходя из строения соединения. И синтезировал их все, доказав свою правоту.

Раскрытие третьего положения

Следующий пункт теории говорит о том, что все атомы и молекулы в пределах одного соединения способны влиять на свойства друг на друга. От этого и будет зависеть характер поведения вещества в реакциях разных типов, проявляемые химические и другие свойства.

Таким образом, на основании этого положения выделяют несколько отличающихся видом и строением функциональной определяющей группы.

Теория строения органических соединений А. М. Бутлерова кратко излагается практически во всех учебных пособиях по органической химии. Ведь именно она - основа данного раздела, объяснение всех закономерностей, на которых построены молекулы.

Значение теории для современности

Безусловно, оно велико. Данная теория позволила:

  1. объединить и систематизировать весь фактический материал, накопившийся к моменту ее создания;
  2. объяснить закономерности строения, свойств различных соединений;
  3. дать полное пояснение причинам такого большого многообразия соединений в химии;
  4. дала старт для многочисленных синтезов новых веществ, базирующихся на положениях теории;
  5. позволила продвинуться взглядам, развиться атомно-молекулярному учению.

Поэтому сказать, что автор теории строения органических соединений, фото которого можно увидеть ниже, сделал многое,- это не сказать ничего. Бутлерова по праву можно считать отцом органической химии, родоначальником ее теоретических основ.

Его научное видение мира, гениальность мышления, способность предвидеть результат сыграли свою роль в конечном счете. Этот человек обладал колоссальной работоспособностью, терпением и неустанно экспериментировал, синтезировал, тренировался. Ошибался, но всегда извлекал урок и делал правильные перспективные выводы.

Только такой набор качеств и деловая хватка, упорство позволили добиться желаемого эффекта.

Изучение органической химии в школе

В курсе среднего образования на изучение основ органики отводится не так много времени. Всего одна четверть 9 класса и весь год 10 ступени (по программе Габриэляна О. С.). Однако этого времени достаточно, чтобы ребята смогли изучить все основные классы соединений, особенности их строения и номенклатуры, практическую значимость.

Основа же для начала освоения курса - теория строения органических соединений А. М. Бутлерова. 10 класс посвящается полному рассмотрению ее положений, а в дальнейшем - теоретическому и практическому подтверждению их при изучении каждого класса веществ.

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.

Основным постулатом теории Бутлерова является положение о химическом строении вещества , под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.

Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.

Этот порядок может быть отображен при помощи структурных формул, в которых валентности атомов обозначаются черточками: одна черточка соответствует единице валентности атома химического элемента. Например, для органического вещества метана, имеющего молекулярную формулу $СН_4$, структурная формула выглядит так:

Основные положения теории А. М. Бутлерова

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи.
  2. Свойства веществ определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т. е. химическим строением вещества.
  3. Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.

Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия ), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.

Органические вещества имеют ряд особенностей:

  1. В состав всех органических веществ входят углерод и водород, поэтому при горении они образуют углекислый газ и воду.
  2. Органические вещества построены сложно и могут иметь огромную молекулярную массу (белки, жиры, углеводы).
  3. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.
  4. Для органических веществ характерной является изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.

Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Структурная изомерия

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле $С_4Н_{10}$ соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода $С_5Н_{12}$ возможны три изомера: пентан, изопентан и неопентан:

$СН_3-СН_2-{СН_2}↙{пентан}-СН_2-СН_3$

С увеличением числа атомов углерода в молекуле число изомеров быстро растет. Для углеводорода $С_{10}Н_{22}$ их уже $75$, а для углеводорода $С_{20}Н_{44}$ - $366 319$.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

$CH_2={CH-CH_2}↙{бутен-1}-CH_3$ $CH_3-{CH=CH}↙{бутен-2}-CH_3$

${CH_3-CH_2-CH_2-OH}↙{н-пропиловый спирт(пропанол-1)}$

Изомерия различных классов органических соединений (межклассовая изомерия) обусловлена различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую молекулярную формулу, но принадлежащих к разным классам. Так, молекулярной формуле $С_6Н_{12}$ соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан:

Изомерами являются углеводород, относящийся к алкинам, - бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

$CH≡C-{CH_2}↙{бутин-1}-CH_2$ $CH_2={CH-CH}↙{бутадиен-1,3}=CH_2$

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу $С_4Н_{10}О$:

${CH_3CH_2OCH_2CH_3}↙{\text"диэтиловый эфир"}$ ${CH_3CH_2CH_2CH_2OH}↙{\text"н-бутиловый спирт (бутанол-1)"}$

Структурными изомерами являются аминоуксусная кислота и нитроэтан, отвечающие молекулярной формуле $С_2Н_5NO_2$:

Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис -положение), либо по разные стороны (транс -положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:

Геометрические изомеры различаются по физическим и химическим свойствам.

Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим. Примером такой молекулы является молекула $α$-аминопропионовой кислоты ($α$-аланина) $СН_3СН(NH_2)COOH$.

Молекула $α$-аланина ни при каком перемещении не может совпасть со своим зеркальным отражением. Такие пространственные изомеры называются зеркальными, оптическими антиподами , или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов - биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов - обмена веществ.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность $CH_2$. Например: $CH_4$ - метан, $C_2H_6$ - этан, $C_3H_8$ - пропан, $C_4H_{10}$ - бутан и т. д.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28"$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ - $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали - гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С-С$ связь, то он называется первичным ($Н_3С-СН_3$), если две - вторичным ($Н_3С-СН_2-СН_3$), если три - третичным (), а если четыре - четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ - одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена - двойная , в молекуле ацетилена - тройная ), а соединения с кратными связями - ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ - гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной - $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):

При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.

Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Радикал. Функциональная группа.

Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом , если же она имеет атомы других элементов, то она называется функциональной группой . Так, например, метил ($СН_3$-) и этил ($С_2Н_5$-) являются углеводородными радикалами, а оксигруппа (-$ОН$), альдегидная группа (), нитрогруппа (-$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.

РАБОТА ПО ХИМИИ

ТЕОРИЯ ХИМИЧКСКОГО СТРОЕНИЯ

ОРГАНИЧЕСКИХ

СОЕДЕНЕНИЙ А.М. БУТЛЕРОВА

ВЫПОЛНИЛ:

Лебедев Евгений

ПЛАН:

1. РАЗВИТИЕ ПРОМЫШЛЕННОСТИ, СВЯЗАННОЙ С ПРОИЗВОДСТВОМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, В ПЕРВОЙ ПОЛОВИНЕ XIX ВЕКА .СВЯЗЬ НАУКИ И ПРАКТИКИ.

2. СОСТОЯНИЕ ОРГАНИЧЕСКОЙ ХИМИИ В СЕРЕДИНЕ XIX ВЕКА.

3. ПРЕДПОСЫЛКИ ТЕОРИИ ХИМИЧЕСКОГО СТРОЕНИЯ.

4. ВЗГЛЯДЫ А.М. БУТЛЕРОВАНА СТРОЕНИЕ ВЕЩЕСТВА.

5. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ.

6. ЗНАЧЕНИЕ ТЕОРИИ ХИМИЧЕСКОГО СТРОЕНИЯ И О НАПРАВЛЕНИЯХ ЕЕ РАЗВИТИЯ.

С органическими веществами человек знаком с давних времен . Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали брожением спиртовых жидкостей уксус…

Но наука о соединениях углерода возникла лишь в первой половине Х I Х века.

В 1828 году ученик Я. Берцелиуса – немецкий ученый Ф.Велер из неорганических веществ синтезирует органическое вещество -–мочевину. В 1845 году немецкий химик А.Кольбе искусственным путем получает уксусную кислоту. В 1854 году французский химик М.Бертло синтезирует жиры. Русский ученый А.М. Бутлеров в 1861 году впервые синтезом получает сахаристое вещество.

Известно, что развивающаяся промышленность, практика ставят новые задачи перед наукой. Как только у общества появляется техническая потребность, она продвигает

науку вперед больше, чем десяток университетов.

Для подтверждения этих слов можно привести такой пример. Текстильная промышленность в 40-х годах девятнадцатого века уже не могла себя

обеспечить натуральными красителями – их не хватало. Перед наукой встала задача получения красителей синтетическим путем. Начались поиски, в результате которых были синтезированы различные анилиновые красители и ализарин, добываемый ранее из корней растения марены. Полученные красители в свою очередь способствовали бурному росту текстильной промышленности.

В настоящее время синтезированы многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например, многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно больше, чем найденных в природе, и их число быстро растет. Начинают осуществляться синтезы самых сложных органических веществ – белков .

2. Состояние органической химии в середине Х I Х века.

Между тем существовали доструктурные теории – теория радикалов и теория типов.

Теория радикалов (ее создатели Ж. Дюма, И. Берцелиус) утверждала, что в состав органических веще ств входят радикалы, переходящие из одной молекулы в другую: радикалы постоянны по составу и могут существовать в свободном виде. В дальнейшем было установлено, что радикалы могут подвергаться изменениям в результате реакции замещения (замещение атомов водорода атомами хлора). Так,была получена трихлоруксусная кислота. Теория радикалов была постепенно отвергнута, однако она оставила глубокий след в науке: понятие о радикале прочно вошло в химию. Верными оказались утверждения о возможности существования радикалов в свободном виде, о переходе в огромном числе реакций определенных групп из одного соединения в другое.

Наиболее распространенной в 40-е г.г. ХIХ века была теория типов. Согласно этой теории все органические вещества считали производными простейших неорганических веществ – типа водорода, хлоро-водорода, воды, аммиака и др. Например, тип водорода

Согласно этой теории формулы выражают не внутреннее строение молекул, а только способы образования и реакции вещества. Создатель этой теории Ш.Жерар и его последователи считали, что строение вещества не может быть познано, так как молекулы в процессе реакции изменяются. Для каждого вещества можно написать столько формул, сколько различных видов превращений может испытывать вещество.

Теория типов в свое время была прогрессивной, так как она позволила провести классификацию органических веществ, предсказать и открыть ряд несложных веществ, если удавалось отнести их по составу и некоторым свойствам к определенному типу. Однако далеко не все синтезируемые вещества укладывались в тот или иной тип соединений. Теория типов обратила основное внимание на изучение химических превращений органических соединений, что важно было для познания свойств веществ. В дальнейшем теория типов стала тормозом развития органической химии, так как она не в состоянии была объяснить факты, накопившиеся в науке, указать пути синтеза новых веществ, необходимых для техники, медицины, ряда отраслей промышленности и др. Нужна была новая теория, которая смогла бы не только объяснить факты, наблюдения, но и прогнозировать, указывать пути синтеза новых веществ.

Фактов, требовавших объяснений много –

- вопрос валентности

- изомерии

- написание формул.

Предпосылки теории химического строения.

К моменту появления теории химического строения А.М. Бутлерова многое уже было известно о валентности элементов : Э. Франкланд установил валентность для ряда металлов, для органических соединений А.Кекуле предложил четырехвалентность атома углерода (1858) , было высказано предположение об углерод-углеродной связи, о возможности соединения атомов углерода в цепи (1859, А.С. Купер, А.Кекуле). Эта идея сыграла большую роль в развитии органической химии.

Важным событием в химии был Международный конгресс химиков (1860, г.Карлсруэ), где были четко определены понятия об атоме, молекуле, атомном весе, молекулярном весе. До этого не было общепризнанных критериев для определения этих понятий, поэтому была путаница в написании формул веществ. А.М. Бутлеров считал самым существенным успехом химии за период с 1840 по 1880г. установление понятий об атоме и молекуле, что дало толчок развитию учения о валентности и позволило перейти к созданию теории химического строения.

Таким образом, теория химического строения возникла не на пустом месте. Объективными предпосылками ее появления явились : а). Введение в химию понятий о валентности и особенно , о четырехвалентности атома углерода, б). Введение понятия об углерод-углеродной связи. в). Выработка правильного представления об атомах и молекулах.

Взгляды А.М. Бутлерова на строение вещества.

В 1861 году был произнесен доклад А.М. Бутлерова на ХХХУ I съезде немецких врачей и естествоиспытателей в Шпейере. Между тем его первое выступление по теоретическим вопросам органической химии состоялось в 1858г, в Париже в Химическом обществе. В своем выступлении, а также в статье о А.С. Купере (1859г.) А.М. Бутлеров указывает на то, что в создании теории химического строения должна сыграть роль валентность (химическое сродство). Здесь он впервые употребил термин «структура», высказал мысль о возможности познания строения вещества, об использовании для этих целей экспериментальных исседований.

Основные идеи о химическом строении были изложены А.М. Бутлеровым в1861 году в докладе «О химическом строении веществ». В нем отмечалось отставание теории от практики, указывалось на то, что теория типов, несмотря на некоторые ее положительные стороны, имеет крупные недостатки. В докладе дано четкое определение понятия о химическом строении, рассмотрены пути установления химического строения (способы синтеза веществ, использование различных реакций).

А.М. Бутлеров утверждал, что каждому веществу соответствует одна химическая формула : она характеризует все химические свойства вещества, реально отражает порядок химической связи атомов в молекулах. В последующие годы А.М. Бутлеров и его ученики осуществили ряд экспериментальных работ с целью проверки правильности предсказаний, сделанных на основе теории химического строения. Так, были синтезированы изобутан, изобутилен, изомеры пентана, ряд спиртов и др. По значимости для науки эти работы можно сравнить с открытием предсказанных Д.И. Менднлеевым элементов (экабор,экасилиций, экаалюминий).

В полном объеме теоретические воззрения А.М. Бутлерова нашли отражение в его учебнике « Введение к полному изучению органической химии» (первое издание вышло в 1864-1866г.г.), построенном на основе теории химического строения. Он считал, что молекулы – это не хаотичное скопление атомов, что атомы в молекулах соединены между собой в определенной последовательности и находятся в постоянном движении и взаимном влиянии. Изучая химические свойства вещества, можно установить последовательность соединения атомов в молекулах и выразить ее формулой.

А.М. Бутлеров считал, что с помощью химических методов анализа и синтеза вещества можно установить химическое строение соединения и, наоборот, зная химическое строение вещества, можно предсказать его химические свойства.

Основные положения теории А.М. Бутлерова .

Основываясь на приведенных выше высказываниях А.М. Бутлерова, сущность теории химического строения можно выразить в следующих положениях :

Атомы в молекулах располагаются не беспорядочно, они соединены друг с другом в определенной последовательности согласно их валентности

А) последовательность соединения атомов в молекуле

Б) углерод четырехвалентен

В) структурные формулы (полные)

Последовательность соединения атомов в молекуле

Г) сокращенные формулы

Д) виды цепей

Изомерия объясняет многообразие органических веществ. Различному порядку взаимосвязи атомов при одном и том же качественном и количественном составе молекулы отвечают, как учит теория химического строения, разные вещества. Если эта теория правильна, должны существовать два бутана, различающиеся по своему строению и свойствам. Так как в то время был известен лишь один бутан, то А.М. Бутлеров предпринял попытку синтезировать бутан другого строения. Полученное им вещество имело тот же состав , но другие свойства, в частности более низкую температуру кипения. В отличие от бутана новое вещество получило название « изобутан» (греч. « изос»- равный).

Создание теории строения именно в России не является слу-чайностью. Шестидесятые годы XIX столетия были годами бур-ного роста капитализма в России. Это, в свою очередь, предъявило ряд требований к естествознанию. В формировании мировоззре-ния русских естествоиспытателей того времени Д. И. Менделеева, И. М. Сеченова, А. М. Бутлерова и др. огромную роль сыграла дея-тельность революционных демократов-материалистов: А. И. Герце-на и В.Г.Белинского, Н.Г.Чернышевского и Н. А.Добролюбова.

Бутлеров воспринял от них материалистическое учение и критическое отношение ко всем теориям. Впервые основные идеи теории строения, высказанные А. М. Бутлеровым в его докладе «О химическом строении вещества», сделанном им 19 сентября 1861 года на конференции в Шпейере, а затем вошли в его учебник, который был издан в России в 1864-1866 гг., а затем переведен в Гер-мании на немецкий язык в 1867-1868 гг.

Основные идеи теории А. М. Бутлерова могут быть кратко из-ложены следующим образом:

1. Все атомы , образующие молекулу органического вещества, свя-заны в определенной последовательности, причем на соедине-ние их друг с другом затрачивается определенная доля химиче-ского сродства.

Четырехвалентность углерода и способность его образовывать цепи вошла в теорию как составные части. Химическое сродство - валентность. Все это привело к написанию химических формул, ко-торыми мы пользуемся в настоящее время, т.е. открытые цени угле-родных атомов, замкнутая в кольцо цепь углеродных атомов.

2. От химического строения вещества зависят его химические и фи-зические свойства. Это положение теории объяснило явление изомерии.

3. Изучение свойств вещества позволяет определить его строение, а, следовательно, и свойства.

4. Химические свойства атомов и атомных групп неизменны и меняются только под влиянием присутствующих атомов и атомных групп, особенно непосредственно связанных друг с другом.

Идея Бутлерова о взаимном влиянии атомов в молекуле впослед-ствии была блестяще развита его учеником В. В. Морковниковым.

Величайшая заслуга А. М. Бутлерова заключается не только в обобщении огромного фактического материала и выдвиженки пе-редовых идей, но и в блестящем экспериментальном доказательстве созданной им теории строения. Исходя из своей теории строения, Л. М. Бутлеров предсказал существование совершенно в то время неизвестных соединений и даже классов (например, третичных спиртов) и затем смог их синтезировать.

Как Д. И. Менделеев , исходя из своей периодической системы, предсказывал неизвестные элементы, так и А. М. Бутлеров, исходя из теории строения, предсказывал возможность существования но-вых веществ и сам синтезировал их.


А. М. Бутлеров впервые высказал мысль о расположении атомов не на плоскости, а в пространстве, и явился основоположником идеи пространственной изомерии.

Он рассматривал химическую молекулу не как что-то мертвое, а находящееся в постоянном движении. Это представление привело Л. М. Бутлерова к идее об «обратной изомерии», т.е. он фактически явился основателем идеи так называемой таутомерии. Прошло бо-лее ста лет с тех пор, как была создана теория А. М. Бутлерова, но и теперь все с тем же успехом пользуются ею химики-органики.

Позднее, К. Шорлеммер в 1880 г определил органическую хи-мию как «химию углеводородов и их производных», он этим хотел подчеркнуть:

1 Способность углерода образовывать цепи С — С атомов.

2 Присутствие водорода в большинстве органических молекул.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал