Строение и свойства молекул. Методы исследования строения молекул Какие существуют способы установления строения молекул веществ

Главная / Учет электроэнергии

К настоящему времени для изучения структуры и свойств молекул разработаны и активно используются сотни разнообразных методов. Многие из них требуют овладения сложными физическими теориями и применения дорогостоящей аппаратуры . В этом разделе мы рассмотрим только некоторые из наиболее часто применяемых методов исследования строения молекул и постараемся дать простую интерпретацию сущности физических явлений, которые лежат в основе этих методов. Но сначала обратимся к рассмотрению движения атомов и молекул в пространстве и движения связанных атомов в молекулах. Это вызвано тем, что многие методы, которыми исследуют строение молекул, основаны на изучении движения электронов и атомов в молекулах и движения самих молекул.

СТЕПЕНИ СВОБОДЫ

Точечная частица имеет три геометрические степени свободы: она может двигаться в трех взаимно-перпендикулярных направлениях. Говорят, что частица имеет три степени свободы.

Под степенью свободы в процессах с обменом энергией понимают такую степень свободы частицы, которая может участвовать в процессе обмена энергией.

Рассмотрим кинетическое поведение атомов. Среднюю кинетическую энергию одного моля атомов легко оценить на примере гелия. Хорошо известно, что теплоемкость одного моля гелия равна 12,47 Дж/(моль К). Это означает, что при нагревании одного моля гелия на один градус требуется 12,47 Дж энергии.

При нагревании атомы гелия начинают быстрее двигаться в пространстве по всем трем осям, которые равноправны. Действительно, атомы гелия обладают только кинетической энергией, которую можно представить в эквивалентном по отношению к трем осям виде

Это означает, что ускорение теплового движения вдоль одной оси при повышении температуры на один градус требует только 4,15 Дж. Последняя величина в точности равна R/2, где R - универсальная газовая постоянная, равная 8,314472(15) Дж/(моль-К). Этот вывод мы распространим на любые атомы и молекулы, что находится в согласии с опытом: поступательная теплоемкость, приходящаяся на одну поступательную степень свободы частицы, равна R/2.

До этого момента мы игнорировали внутреннюю структуру атомов и молекул. Теперь рассмотрим, какую роль играют электроны и ядра атомов в процессах обмена энергией.

При температурах вблизи 300 К средняя кинетическая энергия одного моля атомов и молекул составляет в соответствии с выражением

примерно 3740 Дж/моль. Среднюю кинетическую энергию одной молекулы рассчитывают по уравнению

где к - постоянная Больцмана, равная R/Л/д = 1,38 10 -23 Дж/К.

Средняя кинетическая энергия одной молекулы при 300 К составляет 6,2 10 -21 Дж или 0,039 эВ на одну молекулу. Примерно такая же энергия по величине и передается при соударениях. Ранее нами было показано, что энергия возбуждения электронных уровней энергии требует около 3-И0 эВ. Таким образом, та энергия, которая в среднем может быть передана от одной молекулы к другой, совершенно недостаточна для возбуждения электронных уровней энергии. Поэтому электроны в атомах и молекулах, несмотря на существование у каждого из электронов трех поступательных степеней свободы, как правило, не вносят вклада в общую теплоемкость. Исключения возможны только при наличии низко расположенных электронных уровней энергии.

Обратимся к ядрам атомов, которые входят в состав молекул. Каждое ядро обладает тремя поступательными степенями свободы. Но в составе молекул ядра связаны между собой химическими связями, и поэтому их движение не может происходить совершенно хаотично. Из-за существования химических связей движение ядер относительно друг друга может происходить только в некоторых пределах, иначе молекулы подверглись бы химическим превращениям. Если все ядра движутся согласованно, то такие перемещения могут быть значительными. Например, это имеет место при поступательном движении молекулы как единого целого. В этом случае все ядра в молекуле имеют одинаковую компоненту скорости в направлении поступательного движения.

Наряду с поступательным движением существует еще одна возможность для проявления синхронного движения ядер - это вращение молекул как целого. В общем случае нелинейных молекул имеется три вращательных степени свободы вокруг трех взаимно-перпендикулярных осей, проходящих через центр масс. Центр масс обязательно должен находиться на оси вращения, так как в противном случае он смещался бы при повороте молекулы, что в отсутствие внешних сил невозможно.

Ранее было показано, что вращательная энергия квантуется и квант вращательной энергии определяется вращательной постоянной, равной Й 2 /(2/). Вращательные постоянные молекул обычно существенно меньше k Т (при обычных температурах около 300 К значение kТ составляет около 200 см -1 или 0,026 эВ, или 400 10 -23 Дж, или 2500 Дж/моль) и равны примерно 10 см -1 (120 Дж/моль или 0,0012 эВ/молекула). Поэтому вращения молекул легко возбуждаются при обычных температурах. Теплоемкость, приходящаяся на одну вращательную степень свободы, также равна R/2.

В отличие от нелинейных, линейные молекулы имеют только две вращательные степени свободы относительно двух взаимно-перпендикулярных осей, которые перпендикулярны к оси молекулы. Существует ли вращательная степень свободы относительно оси, совпадающей с осью молекулы? Строго говоря, такая степень свободы существует, но возбуждение вращения вокруг оси молекулы означает возбуждение вращения ядер вокруг оси, проходящей через центры ядер. Кванты вращательной энергии ядер также определяются вращательными постоянными h 2 /(21), где 1 - теперь момент инерции ядра. Для ядер вращательная постоянная составляет по порядку величины (1,054) 2 10 _68 /(2 1,7 10 -27 Ю -30) = 3,2 10 -12 Дж, что намного больше kТ. Следовательно, возбуждения вращательного движения ядер также не может быть в условиях, близких к обычным.

В целом молекула может иметь только 3N степеней свободы, где N - число ядер. Из этих 3N степеней свободы три приходится на поступательные, а три для нелинейных молекул или две для линейных молекул на вращательные степени свободы. Остальные степени свободы колебательные. Нелинейные молекулы имеют 3N -6 колебательных степеней свободы, а линейные -3N-5.

В отличие от вращательных и поступательных степеней свободы на каждую колебательную степень свободы приходится величина теплоемкости, равная R, а не R/2. Это вызвано тем, что при возбуждении колебательного движения энергия расходуется не только на увеличение кинетической энергии ядер, но и на увеличение потенциальной энергии колебательного движения.

Необходимо заметить, что ситуация с колебательными степенями свободы значительно сложнее, чем с поступательными и вращательными. Дело в том, что типичные значения колебательных частот лежат в интервале 1000-3000 см -1 . (1 см -1 ~ 1,24 10 -4 эВ.) Следовательно, кванты колебательного возбуждения будут составлять около 0,1-0,3 эВ, что лишь в несколько раз превосходит энергию теплового движения (0,04 эВ при 300 К). Поэтому при температурах ниже комнатных (300 К) колебательное движение в молекулах возбуждено слабо, но при температурах выше комнатных колебания, особенно в многоатомных молекулах, уже эффективно возбуждаются. Комнатные температуры попадают в промежуточный интервал.

Все колебания в молекулах можно подразделить на валентные и деформационные. В случае валентных колебаний главным образом изменяется длина химической связи, а в случае деформационных - углы между связями. Валентные колебания имеют более высокие частоты, чем деформационные, так как на изменение угла требуется затратить меньше энергии. Число валентных колебаний равно числу связей между атомами в молекуле (двойные и тройные связи рассматриваются в этом случае как одна связь между атомами!). Частоты валентных колебаний составляют для связей С-Н, О-Н и т.д. около 3000-3400 см” 1 , С-С - около 1200 см” 1 , С=С - 1700 см 4 , ОС - 2200 см 4 , С=0 - 1700 см 1 , деформационные колебания лежат обычно в районе 1000 см" 1 . Из приведенных данных видно, что частота валентного колебания связи С-С растет по мере увеличения кратности связи. Это можно объяснить возрастанием прочности связи.

Обсудим данное явление более подробно. Частота осциллятора, изображенного на рис. 2.7, определяется выражением

где т - масса колеблющейся частицы. В случае осциллятора (рис. 2.7), колеблющаяся масса т присоединена пружинкой к стенке, масса которой очень велика, и поэтому стенка не участвует в колебательном движении. В случае молекул каждый колеблющийся атом связан химическими связями, выполняющими роль пружинок, с другими атомами, масса которых не является бесконечно большой. Поэтому все атомы, связанные химическими связями, участвуют в колебательном движении. Например, в молекуле НС1 колеблются как атом водорода, так и атом хлора. Как следует из теории колебательного движения, формула для частоты колебаний осцилляторов типа НС1 должна иметь вид

где р - приведенная масса, равная

где т { ,т 2 - массы атомов, участвующих в химической связи, а к - силовая постоянная, характеризующая прочность связи. Энергия одинарной С-С связи составляет около 410 кДж/моль, двойной -

710 кДж/моль, тройной - 960 кДж/моль. Приведенная масса осциллятора С-С не зависит от характера связи. Таким образом, при переходе от одинарной связи к тройной следовало бы ожидать увеличения частоты осциллятора в 1,5 раза, что и наблюдается экспериментально.

Частоты С-С связей примерно в 2,5 раза меньше частоты С-Н связи. Это вызвано тем, что приведенная масса для колебаний связи С-С больше, чем для связи С-Н, а энергия С-С связи меньше.

Рассмотрим некоторые примеры конкретных молекул, формы колебаний которых изображены на рис. 7.1.

Молекула воды. Имеет 9 степеней свободы, из них три - поступательные, три - вращательные, три - колебательные. Из трех колебательных частот первые два колебания валентные, а третье - деформационное.

Молекула С0 2 . Имеет 9 степеней свободы: три - поступательные, две - вращательные, четыре - колебательные. Из четырех колебательных частот - два колебания - валентные и два - деформаци-


Рис. 7.1. Формы колебаний молекул Н 2 0, С0 2 , Н 2 СО, полученные на основе точной теории

Знаки «+» и «-» означают направления колебаний, перпендикулярных плоскости листа онные. Оба деформационных колебания отличаются только взаимно перпендикулярными плоскостями, в которых происходят колебания. Эти колебания имеют одну и ту же частоту и называются вырожденными.

Нелинейная молекула формальдегида имеет 12 степеней свободы: три - поступательные, три - вращательные, шесть - колебательные. Из шести колебаний - три колебания валентные и три - деформационные.

Из рис. 7.1 видно, что валентные колебания обычно распространяются на всю молекулу: колебания только одной связи - большая редкость. Точно так же деформационные колебания затрагивают в той или иной степени все углы.

Вернемся теперь к расчету теплоемкости молекул. Для атомов (одноатомных молекул) существует главным образом поступательная теплоемкость, равная (3 / 2)R. Для двухатомных молекул имеются три поступательные степени свободы, две вращательные и одна колебательная. Тогда для случая низких (комнатных) температур, не учитывая колебательные степени свободы, получаем С = (3 / 2 + 3 / 2)R = = (5 / 2)R. В случае высоких температур теплоемкость равна (7 / 2)R.

В молекуле воды имеем три поступательные, три вращательные и три колебательные степени свободы. В случае низких температур без учета колебательных степеней свободы С = (3 / 2 + 3 / 2)R = 3R. В случае высоких температур нужно добавить к этому значению еще 3R. В результате получаем 6R.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Эксперементальные методы

1.1 Рентгеноэлектронная спектроскопия

1.2 Ифракрасная спектроскопия

1.3 Дифракционные методы

2. Теоретические методы

2.1 Полуэмпирические методы

2.2 Неэмпирические методы

2.3 Кванто-механические методы

2.4 Метод Хюккеля

Заключение

Список использованных источников

ВВЕДЕНИЕ

В современной органической химии большое значение имеют различные физические методы исследования. Их можно разделить на две группы. К первой группе относятся методы, позволяющие получать различные сведения о строении и физических свойствах вещества, не производя в нем никаких химических изменений. Из методов этой группы, пожалуй, наибольшее применение получила спектроскопия в широком диапазоне областей спектра -- от не слишком жестких рентгеновских лучей до радиоволн не очень большой длины. Ко второй группе относятся методы, в которых используются физические воздействия, вызывающие химические изменения в молекулах. В последние годы к ранее применявшимся широкоизвестным физическим средствам воздействия на реакционную способность молекулы прибавились и новые. Среди них особое значение имеют воздействия жестких рентгеновских лучей и потоков частиц больших энергий, получаемых в атомных реактора

Целью данной курсовой работы является - узнать о методах исследований строения молекул.

Задача курсовой работы:

Выяснить виды методов и изучить их.

1. ЭКСПЕРЕМЕНТАЛЬНЫЕ МЕТОДЫ

1.1 Р ентгеноэлектронная спектроскопия

Метод исследования электронного строения химического соединения, состава и структуры поверхности твердых тел, основанный на фотоэффекте с использованием рентгеновского излучения. При облучении вещества происходит поглощение рентгеновского кванта hv (h-постоянная Планка, v-частота излучения), сопровождающееся эмиссией электрона (наз. фотоэлектроном) с внутренних или внешних оболочек атома. Энергия связи электрона Е св в образце в соответствии с законом сохранения энергии определяется уравнением: Е св = hv-E кин, где E кин -кинетическая энергия фотоэлектрона. Значения Е св электронов внутренних оболочек специфичны для данного атома, поэтому по ним однозначно можно определить состав хим. соединения. Кроме того, эти величины отражают характер взаимодействия исследуемого атома с другими атомами в соединении, т.е. зависят от характера химической связи. Количеств состав образца определяют по интенсивности I потока фотоэлектронов. Принципиальная схема прибора для РЭС-электронного спектрометра-показана на рисунке 1. Образцы облучают рентгеновским излучением из рейтгеновской трубки либо синхротронным излучением. Фотоэлектроны попадают в анализатор-прибор, в котором из общего потока выделяются электроны с определенной Е кин. Сфокусировать монохроматический поток электронов из анализатора направляется в детектор, где определяется его интенсивность I. В рентгеноэлектронном спектре разным атомам соответствуют свои максимумы интенсивности (рисунок 2), хотя некоторые максимумы могут сливаться, давая одну полосу с увеличенной интенсивностью. Линии спектра обозначают следующим образом: рядом с символом элемента называют исследуемую орбиталь (напр., запись Cls означает, что регистрируют фотоэлектроны с орбитали 1s углерода).

Рисуник 1- Схема электронного спектрометра: 1-источник излучения; 2-образец; 3- анализатор; 4-детектор; 5-экран для защиты от магнитного поля

Рисунок 2- Рентгеноэлектронный спектр Сls этилтрифторацетата

РЭС позволяет исследовать все элементы, кроме Н, при содержании их в образце ~ 10 -5 г (пределы обнаружения элемента с помощью РЭС 10 -7 -10 -9 г). Относительное содержание элемента может составлять доли процента. Образцы могут быть твердыми, жидкими или газообразными. Величина E св электрона внутренней оболочки атома А в химических соединениях зависит от эффективного заряда q А на этом атоме и электростатического потенциала U, создаваемого всеми другими атомами соединения: E св = kq А + U, где k-коэффициент пропорциональности.

Для удобства в РЭС вводят понятие химического сдвига E св, равного разности между Е св в исследуемом соединении и некотором стандарте. В качестве стандарта обычно используют значение E св, полученное для кристаллической модификации элемента; например, стандартом при исследовании соединении S служит кристаллическая сера. Поскольку для простого вещества q А 0 и U = 0, то E св = kq A + U. Таким образом, химический сдвиг свидетельствует о положительном эффективном заряде на изучаемом атоме А в химическом соединении, а отрицательный об отрицательном заряде, причем значения E св пропорционально эффективному заряду на атоме. Поскольку изменение эффективного заряда на атоме А зависит от его степени окисления, характера соседних атомов и геометрической структуры соединения, по E св можно определять природу функциональных групп, степень окисления атома, способ координации лигандов и т.д. Энергии связи электронов функциональных атомных групп слабо зависят от типа химического соединения, в котором находится данная функциональная группа.

1.2 И нфракрасная спектроскопия

Раздел оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, т.е. в диапазоне длин волн от 10 -6 до 10 -3 м. В координатах интенсивность поглощенного излучения - длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебательными уровнями основного электронного состояния изучаемой системы. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классические спектрофотометры и фурье спектрометры. Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.) и дифракционной решетки. Последовательное выведение излучения различных длин волн на выходную щель и приемник излучения (сканирование) осуществляется поворотом призмы или решетки. Источники излучения - накаливаемые электрическим током стержни из различных материалов. Приемники: чувствительные термопары, металлические и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда которых приводит к нагреву газа и изменению его давления, которое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой. Достоинства приборов классической схемы: простота конструкции, относит дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой ИК области; сравнительно невысокая разрешающая способность (до 0.1 см -1), длительная (в течение минут) регистрация спектров. В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков. Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонических составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ. Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0.001 см -1). Недостатки: сложность изготовления и высокая стоимость. Все спектрофотометры снабжаются ЭВМ, которые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра растворителя), изменение масштаба записи, вычисление экспериментально спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для ИК спектрофотометров изготовляют из прозрачных в ИК области материалов. В качестве растворителей используют обычно ССl 4 , СНСl 3 , тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют специально защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом. В случае слабо поглощающих в-в (разреженные газы и др.) применяют многоходовые кюветы, в которых длина оптические пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал. Большое распространение получил метод матричной изоляции, при котором исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается и спектр получается более контрастным. Применение специльной микроскопической техники позволяет работать с объектами очень малых размеров (доли мм). Для регистрации спектров поверхности твердых тел применяют метод нарушенного полного внутреннего отражения. Он основан на поглощении поверхностным слоем вещества энергии электромагнитного излучения, выходящего из призмы полного внутреннего отражения, которая находится в оптическом контакте с изучаемой поверхностью. Инфракрасную спектроскопию широко применяют для анализа смесей и идентификация чистых веществ. Количественный анализ основан на законе Бугера-Ламберта-Бера, т. е. на зависимости интенсивности полос поглощения от концентрации вещества в пробе. При этом о кол-ве вещества судят не по отделенным полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значительном перекрывании последних. Погрешность количественного анализа, как правило, составляет доли процента. Идентификация чистых веществ производится обычно с помощью информационно-поисковых систем путем автоматического сравнения анализируемого спектра со спектрами, хранящимися в памяти ЭВМ. Для идентификации новых веществ (молекулы которых могут содержать до 100 атомов) применяют системы искусственного интеллекта. В этих системах на основе спектроструктурных корреляций генерируются молярные структуры, затем строятся их теоретические спектры, которые сравниваются с экспериментальными данными. Исследование строения молекул и др. объектов методами инфракрасной спектроскопии подразумевает получение сведений о параметрах моделей и математически сводится к решению т. наз. обратных спектральных задач. Решение таких задач осуществляется последовательным приближением искомых параметров, рассчитанных с помощью спец. теории спектральных кривых к экспериментальным. Параметрами мол. моделей служат массы составляющих систему атомов, длины связей, валентные и торсионные углы, характеристики потенциальной поверхности (силовые постоянные и др.), дипольные моменты связей и их производные по длинам связей и др. Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимодействия, характер химических связей, распределение зарядов в молекулах, фазовые превращения, кинетику химических реакций, регистрировать короткоживущие (время жизни до 10 -6 с) частицы, уточнять отдельные геом. параметры, получать данные для вычисления термодинамических функций и др. Необходимый этап таких исследований - интерпретация спектров, т.е. установление формы нормальных колебаний, распределения колебательной энергии по степеням свободы, выделение значимых параметров, определяющих положение полос в спектрах и их интенсивности. Расчеты спектров молекул, содержащих до 100 атомов, в т.ч. полимеров, выполняются с помощью ЭВМ. При этом необходимо знать характеристики мол. моделей (силовые постоянные, электрооптические параметры и др.), которые находят решением соответствующих обратных спектральных задач или квантовохимическими расчетами. И в том, и в другом случае обычно удается получать данные для молекул, содержащих атомы лишь первых четырех периодов периодической системы. Поэтому инфракрасная спектроскопия как метод изучения строения молекул получил наиболее распространение в органической и элементоорганической химии. В отдельных случаях для газов в ИК области удается наблюдать вращательную структуру колебательных полос. Это позволяет рассчитывать дипольные моменты и геом. параметры молекул, уточнять силовые постоянные и т.д.

1.3 Дифракционные методы

Дифракционные методы исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучении рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов. Различают рентгенографию, электронографию, нейтронографию. Во всех случаях первичный, чаще всего монохроматический, пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0.2 нм, т. е. соизмерима с расстояниями между атомами в веществе (0.1-0.4 нм), то рассеяние падающей волны представляет собой дифракцию на атомах. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Теория, описывающая связь картины упругого рассеяния с пространств, расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимодействия разного рода излучений с веществом имеет разную физ. природу, конкретный вид и особенности дифракционной. картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.

Основы теории дифракции. Плоскую монохроматическую. волну с длиной волны и волновым вектором, где можно рассматривать как пучок частиц с импульсом, где Амплитуда волны, рассеянной совокупностью из атомов, определяется уравнением:

По такой же формуле рассчитывают и атомный фактор, при этом описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками атомов. Соответствующий атомный фактор численно равен числу электронов в атоме, если выражен в названии электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободном электроне. Рассеяние электронов определяется электростатическим потенциалом атома. Атомный фактор для электрона связан соотношением:

исследование молекула спектроскопия дифракционный квантовый

Рисунок 2- Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), электронов (2) и нейтронов (3) от угла рассеяния

Рисунок 3- Относительная зависимость усредненных по углу атомных факторов рентгеновских лучей (сплошная линия), электронов (штриховая)и нейтронов от атомного номера Z

При точных расчетах рассматривают отклонения распределения электронной плотности или потенциала атомов от сферической симметрии и название атомно-температурный фактор, учитывающий влияние тепловых колебаний атомов на рассеяние. Для излучения помимо рассеяния на электронных оболочках атомов существует роль может играть резонансное рассеяние на ядрах. Фактор рассеяния f м зависит от волновых векторов и векторов поляризации падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности (r) необходимо знать также фазы (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить функцию (r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов. Структурный анализ. Монокристалл представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для которых вектор рассеяния равен вектору обратной решетки.

Для построения функции (х, у, z)по экспериментально определяемым величинам применяют метод проб и ошибок, построение и анализ функции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз. Обработка экспериментальных данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Структуры кристаллов изучают с помощью рентгеновского структурного анализа. Этим методом определено более 100 тысяч структур кристаллов.

Для неорганических кристаллов с применением различных методов уточнения (учет поправок на поглощение, анизотропию атомно-температурного фактора и т. д.) удается восстановить функцию с разрешением до 0.05

Рисунок 4- Проекция ядерной плотности кристаллической структуры

Это позволяет определять анизотерапию тепловых колебаний атомов, особенности распределения электронов, обусловленные химической связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры кристаллов белков, молекулы которых содержат тысячи атомов. Дифракция рентгеновских лучей используется также для изучения дефектов в кристаллах (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качественного и количественного определения фазового состава поликристаллических материалов. Электронография как метод изучения структуры кристаллов имеет след. особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях вещества толщиной 1 -100 нм; 2) f э зависит от атомного ядра слабее, чем f р, что позволяет проще определять положение легких атомов в присутствии тяжелых; Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 эВ, 0.1-0.4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0.2-0.5 нм. Источниками нейтронов для структурного анализа служат ядерные реакторы на быстрых нейтронах, а также импульсные реакторы. Спектр пучка нейтронов, выходящих из канала реактора, непрерывен вследствие максвелловского распределения нейтронов по скоростям (его максимум при 100°С соответствует длине волны 0.13 нм).

Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. Нейтронографию используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от атомного номера позволяет достаточно точно определять положение легких атомов. Кроме того, изотопы одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и углеводорода 3.74.10 13 см, у дейтерия 6.67.10 13 см). Это дает возможность изучать расположение изотопов и получать дополнит. сведения о структуре путем изотопного замещения. Исследование магнитного взаимодействия. нейтронов с магнитнами моментами атомов дает информацию о спинах магнитного атомов. Мёссбауэровское -излучение отличается чрезвычайно малой шириной линии - 10 8 эВ (тогда как ширина линии характеристических излучения рентгеновских трубок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магнитное поле и градиент электрического поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом кристалле ядер, для которых наблюдается эффект Мёссбауэра. Структурный анализ некристаллическихвеществ.Отдельные молекулы в газах, жидкостях и твердых аморфных телах по-разному ориентированы в пространстве, поэтому определить фазы рассеянных волн, как правило, невозможно. В этих случаях интенсивность рассеяния обычно представляют с помощью т. наз. межатомных векторов r jk , которые соединяют пары различных атомов (j и k) в молекулах: r jk = r j - r k . Картина рассеяния усредняется по всем ориентациям:

2 ТЕОРЕТИЧЕСКИЕ МЕТОДЫ

2.1 Полуэмпирические методы

Полуэмпирические методы квантовой химии, методы расчета мол. характеристик или свойств вещества с привлечением экспериментальных данных. По своей сути полуэмпирические методы аналогичны неэмпирическим методам решения уравнения Шрёдингера для многоатомных систем, однако для облегчения расчетов в полуэмпирических методах вводятся дополнит. упрощения. Как правило, эти упрощения связаны с валентным приближением, т. е. основаны на описании лишь валентных электронов, а также с пренебрежением определенными классами молекулярных интегралов в точных уравнениях того неэмпирического метода, в рамках которого проводится полуэмпирический расчет.

Выбор эмпирических параметров основан на обобщении опыта неэмпирических расчетов, учете химических представлений о строении молекул и феноменологических закономерностей. В частности, эти параметры необходимы для аппроксимации влияния внутренних электронов на валентные, для задания эффективных потенциалов, создаваемых электронами остова, и т.п. Использование экспериментальных данных для калибровки эмпирических параметров позволяет устранить ошибки, обусловленные упомянутыми выше упрощениями, однако лишь для тех классов молекул, представители которых служат опорными молекулами, и лишь для тех свойств, по которым параметры определялись.

Наиболее распространены полуэмпирические методы, основанные на представлениях о мол. орбиталях (см. Молекулярных орбиталей методы, Орбиталь). В сочетании с ЛКАО-приближением это позволяет выразить гамильтониан молекулы через интегралы на атомных орбиталях. При построении полуэмпирических методов в мол. интегралах выделяют произведения орбиталей, зависящих от координат одного и того же электрона (дифференциальное перекрывание), и пренебрегают некоторыми классами интегралов. Напр., если нулевыми считаются все интегралы, содержащие дифференциальное перекрывание cаcb при а. b, получается т. наз. метод полного пренебрежения дифференциала. перекрыванием (ППДП, в англ. транскрипции CNDO-complete neglect of differential overlap). Применяют также частичное или модифицированное частичное пренебрежение дифференциальное перекрыванием (соотв. ЧПДП или МЧПДП, в английской транскрипции INDO- intermediate neglect of differential overlap и MINDO-modified INDO), пренебрежение двухатомным дифференциальное перекрыванием - ПДДП, или neglect of diatomic differential overlap (NDDO), - модифицирование пренебрежение двухатомным перекрыванием (МПДП, или modified neglect of diatomic overlap, MNDO). Как правило, каждый из полуэмпирических методов имеет несколько вариантов, которые принято указывать в названии метода цифрой или буквой после косой черты. Напр., методы ППДП/2, МЧПДП/3, МПДП/2 параметризованы для расчетов равновесной конфигурации ядер молекулы в основном электронном состоянии, распределения заряда, потенциалов ионизации, энтальпий образования химических соединений, метод ЧПДП используется для расчета спиновых плотностей. Для расчета энергий электронного возбуждения применяют спектроскопическую параметризацию (метод ППДП/С). Распространено также использование в названиях полуэмпирических методов соответствующих программ для ЭВМ. Напр., один из расширенных вариантов метода МПДП называют Остинской моделью, как и соответствующую программу (Austin model, AM). Имеется несколько сотен различных вариантов полуэмпирических методов, в частности разработаны полуэмпирические методы, аналогичные конфигурационного взаимодействия методу. При внешних схожести разных вариантов полуэмпирических методов каждый из них можно применять для расчета лишь тех свойств, по которым проведена калибровка эмпирических параметров. В наиб. простых Полуэмпирических расчетах каждая мол. орбиталь для валентных электронов определяется как решение одноэлектронного уравнения Шрёдингера с оператором Гамильтона, содержащим модельный потенциал (псевдопотенциал) для электрона, находящегося в поле ядер и усредненном поле всех остальных электронов системы. Такой потенциал задают непосредственно с помощью элементарных функций или основанных на них интегральных операторов. В сочетании с ЛКАО-приближением подобный подход позволяет для многих сопряженных и ароматического мол. систем ограничиться анализом p-электронов (см. Хюккеля метод), для координационной соединений-пользоваться расчетными методами поля лигандов теории и кристаллического поля теории и т.п. При изучении макромолекул, напр. белков, или кристаллических образований нередко пользуются полуэмпирическими методами, в которых электронное строение не анализируется, а определяется непосредственно поверхность потенциальной энергии. Энергию системы приближенно считают суммой парных потенциалов взаимодействия атомов, напр. потенциалов Морса (Морзе) или Леннард-Джонса (см. Меж молекулярные взаимодействия). Такие полуэмпирические методы позволяют проводить расчет равновесной геометрии, конформационных эффектов, энергии изомеризации и т.п. Нередко парные потенциалы дополняют определенными для отдельных фрагментов молекулы многочастичными поправками. Полуэмпирические методы такого типа, как правило, относят к молекулярной механике. В более широком смысле к полуэмпирическим методам относятся любые методы, в которых определенные решением обратных задач параметры мол. системы используются для предсказаний новых экспериментальных данных, построения корреляционных соотношений. В этом смысле полуэмпирическими методами являются методы оценки реакционной способности, эффективных зарядов на атомах и т. п. Сочетание полуэмпирического расчета электронного строения с корреляц. соотношениями позволяет оценивать биологическую активность различных веществ, скорости химических реакций, параметры технологических процессов. К полуэмпирическим методам относятся и некоторые аддитивные схемы, напр. применяемые в химической термодинамике методы оценки энергии образования как суммы вкладов отдельных фрагментов молекулы. Интенсивное развитие полуэмпирических методов и неэмпирических методов квантовой химии делает их важными средствами современные исследования механизмов хим. превращений, динамики элементарного акта хим. реакции, моделирования биохимических и технологических процессов. При правильном использовании (с учетом принципов построения и способов калибровки параметров) полуэмпирические методы позволяют получить надежную информацию о строении и свойствах молекул, их превращениях.

2.2Неэмпирические методы

Принципиально иное направление расчетной квантовой химии, сыгравшее огромную роль в современном развитии химии в целом, состоит в полном или частичном отказе от вычисления одноэлектронных (3.18) и двухэлектронных (3.19)-(3.20) интегралов, фигурирующих в методе ХФ. Вместо точного оператора Фока используется приближенный, элементы которого получают эмпирическим путем. Параметры оператора Фока подбирают для каждого атома (иногда с учетом конкретного окружения) или для пар атомов: они либо являются фиксированными, либо зависят от расстояния между атомами. При этом часто (но не обязательно - см. ниже) предполагается, что многоэлектронная волновая функция является однодетерминантной, базис - минимальным, а атомные орбитали Х; - симметричными ортогональными комбинациями ОСТ Хг Такие комбинации легко получить, аппроксимируя исходные АО функциями Слейтера "Xj (2.41) с помощью преобразования Полуэмпирические методы работают гораздо быстрее, чем неэмпирические. Они применимы к большим (часто - к очень большим, например, биологическим) системам и для некоторых классов соединений дают более точные результаты. Однако следует понимать, что это достигается за счет специально подобранных параметров, справедливых лишь в пределах узкого класса соединений. При переносе на другие соединения те же методы могут дать абсолютно неверные результаты. Кроме того, параметры часто подбираются таким образом, чтобы воспроизводить только определенные молекулярные свойства, поэтому придавать физический смысл отдельным параметрам, используемым в схеме расчета, не следует. Перечислим основные приближения, используемые в полуэмпирических методах.

1.Рассматриваются только валентные электроны. Считают, что электроны, относящиеся к атомным остовам, лишь экранируют ядра. Поэтому влияние этих электронов учитывают, рассматривая взаимодействие валентных электронов с атомными остовами, а не с ядрами, и вводя энергию отталкивания остовов вместо энергии межъядерного отталкивания. Поляризацией остовов пренебрегают.

2. В МО учитывают только АО с главным квантовым числом, соответствующим высшим заселенным электронами орбиталям изолированных атомов (минимальный базис). Предполагают, что базисные функции образуют набор ортанормированных атомных орбиталей- ОСТ, ортогонализованных по Лёвдину.

3. Для двухэлектронных кулоновских и обменных интегралов вводят приближение нулевого дифференциального перекрывания (НДП) .

Молекулярной структуре в пределах структурной области может соответствовать набор модификаций молекулы, сохраняющих одинаковую систему валентных химических связей при разной пространствеиной организации ядер. В этом случае глубокий минимум ППЭ дополнительно имеет несколько неглубоких (эквивалентных или неэквивалентных по энергии) минимумов, разделенных небольшими потенциальными барьерами. Различные пространствеиные формы молекулы, преобразующиеся друг в друга в пределах данной структурной области путем непрерывного изменения координат атомов и функциональных групп без разрыва или образования химических связей, составляют множество конформаций молекулы. Набор конформаций, энергии которых меньше намнизшего барьера, примыкающего к данной структурной области ППЭ, называется конформационным изомером, или конформером. Конформеры, соответствующие локальным минимумам ППЭ, называются устойчивыми или стабильными. Таким образом, молекулярную структуру можно определить как совокупность конформаций молекулы в определенной структурной области Часто встречающимся в молекулах типом конформационного перехода является вращение отдельных групп атомов относительно связей: говорят, что имеет место внутреннее вращение, а различные конформеры называют вращательными изомерами, или ротамерами. При вращении меняется и электронная энергия, причем ее значение в процессе такого движения может проходить через максимум; в этом случае говорят о барьере внутреннего вращения. Последние во многом обусловлены способностью этих молекул легко адаптировать структуру при взаимодействии с разными системами. Каждому энергетическому минимуму ППЭ соответствует пара энантиомеров с одинаковой энергией - правый (R) и левый (S). Эти пары имеют энергии, отличающиеся всего на 3.8 ккал/моль, однако они разделены барьером высотой 25.9 ккалjмоль и, следовательно, весьма устойчивы при отсутствии внешних воздействий. Результаты квантово-химических расчетов энергий барьеров внутреннего вращения для некоторых молекул и соответствующие экспериментальные значения. Теоретические и экспериментальные величины барьеров вращения для связей С-С, С-Р, C-S отличаются всего на 0.1 ккал/моль; для связей С-0, C-N, C-Si, несмотря на использование базисного набора с включением поляризационных функций (см. ниже), разница заметно выше. 1"ем не менее, можно констатировать удовлетворительную точность расчета энергий барьеров внутреннего вращения методом ХФ.

Подобные расчеты энергий барьеров внутреннего вращения для простых молекул помимо спектроскопических приложений важны как критерий качества того или иного расчетного метода. Большого внимания заслуживает внутреннее вращение в сложных молекулярных системах, например, в полипептидах и белках, где этот эффект обусловливает мноmе биологически важные функции этих соединений. Вычисление поверхностей потенциальной энергии для таких объектов представляет собой сложную задачу как в теоретическом, так и в практическом плане. Распространенным видом конформационного перехода является инверсия, такая, какая имеет место в пирамидальных молекулах типа АХ3 (А= N, Si, Р, As, Sb; Х =Н, Li, F и др.). В этих молекулах атом А может занимать позиции как выше, так и ниже плоскости, образованной тремя атомами Х. Например, в молекуле аммиака NH3 метод ХФ дает величину энергетического барьера, равную 23,4 ккал/моль; это неплохо согласуется с экспериментальным значением барьера инверсии - 24.3 ккал/моль. Если барьеры между минимумами ППЭ сопоставимы с тепловой энергией молекулы, это приводит к эффекту структурной нежесткости молекулы; конформационные переходы в таких молекулах происходят постоянно. Для решения уравнений ХФ применяется метод самосогласованного поля. В процессе решения оптимизируются только орбитали, занятые электронами, следовательно, энергии лишь этих орбиталей находят физически обоснованно. Однако метод. ХФ дает и характеристики свободных орбиталей: такие молекулярные спин-орбитали называются виртуальными. К сожалению, они описывают возбужденные энергетические уровни молекулы с погрешностью около 100%, и применять их для трактовки спектроскопических данных следует с осторожностью - для этого существуют другие методы. Также как и для атомов, метод ХФ для молекул имеет различные версии, в зависимости от того, является ли однодетерминантная волновая функция собственной функцией оператора квадрата полного спина системы S2 или нет. Если волновая функция построена из пространствеиных орбиталей, занятых парой электронов с противоположными спинами (молекулы с замкнутыми оболочками), это условие выполняется, а метод называется ограниченным методом Хартри-Фока (ОХФ). Если требование быть собственной функцией оператора на волновую функцию не накладывается, то каждая молекулярная спин-орбиталь отвечает определенному спиновому состоянию (а или 13), то есть электроны с противоположными спинами занимают разные спин-орбитали. Такой метод обычно применяется для молекул с открытыми оболочками и называется неограниченным методом ХФ (НХФ), или методом разных орбиталей для разных спинов. Иногда низколежащие энергетические состояния описывают орбиталями, дважды занятыми электронами, а валентные состояния описывают однократно занятыми молекулярными спин-орбиталями; этот метод назьmается ограниченным методом Хартри-Фока для открытых оболочек (ОХФ- 00). Как и в атомах волновая функция молекул с открытыми оболочками не соответствует чистому спиновому состоянию, и могут возникать решения, у которых симметрия волновой функции по спину понижена. Они называются НХФ-нестабильными решениями.

2.3 Квантово-механические методы

Успехи теоретической химии, развитие квантовой механики создали возможность приближенных количественных расчетов молекул. Известно два важнейших метода расчета: метод электронных пар, называемый также методом валентных связей, и метод молекулярных орбит. Первый из этих методов, разработанный Гейтлером и Лондоном для молекулы водорода, приобрел широкое распространение в 30-х годах нынешнего столетия. В последние годы все большее значение приобретает метод молекулярных орбит (Гунд, Э. Хюккель, Мулликен,Герц-берг, Ленард-Джонс).

В этом приближенном методе расчета состояние молекулы описывается так называемой волновой функцией ш, которая составляется по определенному правилу из ряда слагаемых:

Сумма этих слагаемых должна учитывать все возможные комбинации, возникающие в результате попарного связывания атомов углерода за счет р-электронов.

Для того чтобы облегчить расчет волновой функции ш, отдельные слагаемые (C1ш1, C2ш2 и т. д.) условно изображаются графически в виде соответствующих валентных схем, которые используются как вспомогательные средства при математическом расчете. Например, когда указанным способом рассчитывают молекулу бензола и принимают во внимание только р-элек-троны, то таких слагаемых получается пять. Этим слагаемым соответствуют следующие валентные схемы:

Часто приведенные валентные схемы изображают с учетом у-связей, например для бензола

Такие валентные схемы называют «невозмущенными структурами» или «предельными структурами»

Функции ш1, ш2, ш3 и т. д. различных предельных структур входят в волновую функцию ш с тем большими коэффициентами (с тем большим весом), чем меньше энергия, рассчитанная для соответствующей структуры. Электронное состояние, соответствующее волновой функции ш, наиболее устойчиво сравнительно с электронными состояниями, изображаемыми функциями ш1, ш2, ш3 и т. д.; энергия же состояния, изображаемого функцией ш (реальной молекулы), естественно, является наименьшей сравнительно с энергиями предельных структур.

При расчете молекулы бензола по методу электронных пар учитываются пять предельных структур (I--V). Две из них тождественны классической структурной формуле Кекуле и три--формуле Дьюара. Так как энергия электронных состояний, соответствующих предельным структурам III, IV и V, выше, чем для структур I и II, то вклад структур III, IV и V в смешанную волновую функцию молекулы бензола шменьше, чем вклад структур I и II. Поэтому в первом приближении для изображения распределения электронной плотности в молекуле бензола достаточно двух эквивалентных структур Кекуле.

Около тридцати лет назад Л. Полинг развил качественные эмпирические представления, имеющие некоторые аналогии с методом электронных пар; эти представления были им названы теорией резонанса. Согласно основному постулату этой теории, любая молекула, для которой можно написать несколько классических структурных формул, не может быть правильно изображена ни одной из этих отдельно взятых формул (предельных структур), а только их набором. Качественная картина распределения электронной плотности в реальной молекуле описывается суперпозицией предельных структур (каждая из которых представлена с определенным весом).

Предельные структуры не соответствуют каким-либо реальным электронным состояниям в невозбужденных молекулах, однако не исключено, что они могут осуществляться в возбужденном состоянии или в момент реакции.

Вышеизложенная качественная сторона теории резонанса совпадает с концепцией мезомерии, несколько ранее развитой Инголдом и независимо от него Арндтом.

Согласно этой концепции, истинное состояние молекулы является промежуточным («мезомерным») между состояниями, изображенными двумя или несколькими «предельными структурами», которые можно написать для данной молекулы, пользуясь правилами валентности.

Кроме этого основного положения теории мезомерии, к ее аппарату относятся хорошо разработанные представления об электронных смещениях, в обосновании, интерпретации и опытной проверке которых важная роль принадлежит Инголду. Согласно Инголду, механизмы электронных смещений (электронных эффектов) различны в зависимости от того, осуществляется ли взаимное влияние атомов через цепь простых или сопряженных двойных связей. В первом случае это -- индукционный эффект I (или также статический индукционный эффект Is), во втором случае -- мезомерный эффект М (статический эффект сопряжения).

В реагирующей молекуле электронное облако может поляризоваться по индукционному механизму; такое электронное смещение называется индуктомерным эффектом Id. В молекулах с сопряженными двойными связями (и в ароматических молекулах) поляризуемость электронного облака в момент реакции обусловлена электромерным эффектом E (динамический эффект сопряжения).

Теория резонанса не вызывает никаких принципиальных возражений, пока речь идет о способах изображения молекул, но она имеет и большие претензии. Аналогично тому, как в методе электронных, пар волновая функция описывается линейной комбинацией других волновых функций ш1, ш2, ш3 и т. д., теория резонанса предлагает описывать истинную волновую функцию шмолекулы в виде линейной комбинации волновых функций предельных структур.

Однако математика не дает критериев для выбора тех или иных «резонансных структур»: ведь в методе электронных пар волновую функцию можно представить не только как линейную комбинацию волновых функций ш1, ш2, ш3 и т. д., но и как линейную комбинацию любых других функций, подобранных с определенными коэффициентами. Выбор же предельных структур может быть сделан только на основе химических соображений и аналогий, т. е. здесь концепция резонанса по существу не дает ничего нового по сравнению с концепцией мезомерии.

При описании распределения электронной плотности в молекулах с помощью предельных структур необходимо постоянно иметь в виду, что отдельно взятые предельные структуры не соответствуют какому-либо реальному физическому состоянию и что никакого физического явления «электронного резонанса» не существует.

Из литературы известны многочисленные случаи, когда сторонники концепции резонанса приписывали резонансу смысл физического явления и считали, что за определенные свойства веществ ответственны те или иные отдельные предельные структуры. Возможность возникновения таких ошибочных представлений заложена во многих пунктах концепции резонанса. Так, когда говорят о «различных вкладах предельных структур» в реальное состояние молекулы, легко может возникнуть представление о реальном существовании этих соотношений. Реальная молекула в концепции резонанса считается «резонансным гибридом»; этот термин может навести на мысль о якобы реальном взаимодействии предельных структур, подобно гибридизации атомных орбит.

Неудачен также термин «стабилизация за счет резонанса», так как стабилизация молекулы не может быть обусловлена несуществующим резонансом, а представляет собой физическое явление делокализации электронной плотности, характерное для сопряженных систем. Целесообразно поэтому это явление называть стабилизацией за счет сопряжения. Энергия сопряжения (энергия делокализации, или энергия мезомерии) может быть определена экспериментальным путем, независимо от «энергии резонанса», вытекающей из квантово-механических расчетов. Это -- разность между энергией, вычисленной для гипотетической молекулы с формулой, соответствующей одной из предельных структур, и энергией, найденной экспериментально для реальной молекулы.

С указанными выше оговорками способ описания распределения электронной плотности в молекулах с помощью нескольких предельных структур несомненно может быть использован наряду с двумя другими также весьма распространенными способами.

2.4 Метод Хюккеля

Хюккеля метод, квантовохимический метод приближенного расчета энергетических уровней и мол. орбиталей ненасыщенных орг. соединений. Основан на предположении, согласно которому движение электрона вблизи атомного ядра в молекуле не зависит от состояний или числа др. электронов. Это позволяет максимально упростить задачу определения мол. орбиталей (МО) в представлении линейной комбинацией атомных орбиталей. Метод предложен Э. Хюккелем в 1931 для расчета электронного строения углеводородов с сопряженными связями. Считается, что атомы углерода сопряженной системы лежат в одной плоскости, относительно которой высшие занятые и низшие виртуальные (свободные) МО (граничные мол. орбитали) антисимметричны, т. е. являются орбиталями, образованными атомными 2рz-орбиталями (АО) соответствующих атомов С. Влиянием остальных атомов, напр. Н, или мол. фрагментов с насыщенными связями пренебрегают. Предполагается, что каждый из М атомов углерода сопряженной системы вносит в систему один электрон и описывается одной атомной 2рz-орбиталью(k = 1, 2, ..., М). Простая модель электронного строения молекулы, даваемая Хюккеля методом, позволяет понять многие хим. явления. Например неполярность альтернантных углеводородов обусловлена тем, что эффективные заряды на всех атомах углерода равны нулю. Напротив, неальтернантная конденсированная система 5- и 7-членного циклов (азулен) имеет дипольный момент ок. 1Д (3.3 x 10 -30 Кл x м). В нечетных альтернантных углеводородах основное энергетическое. состояние отвечает электронной системе, в которой есть хотя бы одна однократно занятая орбиталь. Можно показать, что энергия этой орбитали та же, что и в свободном атоме, в связи с чем она наз. несвязывающей МО. Удаление или добавление электрона изменяет заселенность лишь несвязывающей орбитали, что влечет появление заряда на некоторых атомах, который пропорционален квадрату соответствующего коэффициент в разложении несвязывающей МО по АО. Для определения такой МО применяют простое правило: сумма коэффициент Ck для всех атомов, соседних с любым данным, должна быть равна нулю. Кроме того, значения коэффициент должны отвечать дополнит. условию нормировки: Это приводит к характерному чередованию (альтернированию) зарядов на атомах в мол. ионах альтернантных углеводородов. В частности, указанное правило объясняет выделение по хим. свойствам орто- и пара-положений в бензольном ядре по сравнению с мета-положением. Закономерности, установленные в рамках простого Хюккеля метода, искажаются при более полном учете всех взаимодействие в молекуле. Однако обычно влияние множества разнородных дополнит, факторов (например электронов остова, заместителей, межэлектронного отталкивания и т. п.) качественно не меняет орбитальную картину электронного распределения. Поэтому Хюккеля метод часто используют для моделирования сложных механизмов реакций с участием орг. соединений. При введении в молекулу гетероатомов (N, О, S, ...) существенными становятся параметры матрицы H, принимаемые для гетероатома и для атомов углерода. В отличие от случая полиенов, разные типы атомов или связей описываются разными параметрами или и их соотношение существенно влияет на вид МО; качество предсказаний, получаемых в рамках простого Хюккеля метода, как правило, в итоге ухудшается. Простой по своей идее, наглядный и не требующий сложных вычислений Хюккеля метод является одним из наиболее распространенных средств создания квантовохимической модели электронного строения сложных мол. систем. Наиб. эффективно его применение в тех случаях, когда свойства молекулы определяются в основные топологические структурой хим. связей, в частности симметрией молекулы. Попытки построить улучшенные варианты Хюккеля метода в рамках простых молекулярных орбиталей методов имеют мало смысла, т. к. приводят к методикам расчета, сравнимым по сложности с более точными методами квантовой химии.

Заключение

В настоящее время создана «целая отрасль науки -- квантовая химия, занимающаяся приложением квантово-механических методов к химическим проблемам. Однако было бы принципиально ошибочным думать, что все вопросы строения и реакционной способность органических соединений могут быть сведены к задачам квантовой механики. Квантовая механика изучает законы движения электронов и ядер, т. е. законы низшей формы движения, сравнительно с той, которую изучает химия (движение атомов и молекул), а высшая форма движения никогда не может быть сведена к низшей. Даже для весьма простых молекул такие вопросы, как реакционная способность веществ, механизм и кинетика их превращений, не могут быть изучены только методами квантовой механики. Основой изучения химической формы движения материи являются химические методы исследования, и ведущая роль в развитии химии принадлежит теории химического строения.

Список использованных источников

1. Минкин, В.И. Теория строения молекул/ В.И. Минкин. -М.:Высш.шк., 2006- 640с.

2. Вилков, Л.В. Физические методы исследования в химии./ Л.В. Вилков, Ю.А. Пентин. - М.:Высш.шк., 2005-380с.

3. Гардымова, А.П. Научная электронная библиотека: элементы и устройства вычислительной техники и систем управления / А.П. Гардымова. - 2005.

4. Ельяшевич, М.А. Атомная и молекулярная спектроскопия/ М.А. Ельяшевич, В. Демтредер. -М.: Мир, 1989-260с.

5. Блатов, В.А. Полуэмпирические расчетные методы/ В.А. Блатов, А.П. Шевченко. - М.: «Универс- групп» 2005-315с.

6. Цирельсон, В.Г. Квантовая химия, молекулы, молекулярные системы и твердые тела -М.: «БИНОМ» 2010-496с.

Размещено на Allbest.ru

Подобные документы

    Основные положения атомно-молекулярного учения. Закономерности броуновского движения. Вещества атомного строения. Основные сведения о строении атома. Тепловое движение молекул. Взаимодействие атомов и молекул. Измерение скорости движения молекул газа.

    презентация , добавлен 18.11.2013

    Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

    презентация , добавлен 18.05.2011

    Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат , добавлен 11.08.2014

    Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.

    лабораторная работа , добавлен 11.02.2011

    Основные положения молекулярной теории строения вещества. Скорость движения молекул вещества. Переход вещества из газообразного состояния в жидкое. Процесс интенсивного парообразования. Температура кипения и давление. Поглощение теплоты при кипении.

    презентация , добавлен 05.02.2012

    Возникновение представлений о строении вещества: молекула - мельчайшая частица; понятие диффузии. Притяжение и отталкивание молекул, агрегатные состояния веществ. Особенности молекулярного строения твердых тел, жидкостей и газов, кристаллическая решетка.

    реферат , добавлен 10.12.2010

    Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.

    реферат , добавлен 06.06.2011

    Изучение процессов рассеяния заряженных и незаряженных частиц как один из основных экспериментальных методов исследования строения атомов, атомных ядер и элементарных частиц. Борновское приближение и формула Резерфорда. Фазовая теория рассеяния.

    курсовая работа , добавлен 03.05.2011

    Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация , добавлен 28.05.2013

    Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.

В 1852 году английский химик Эдуард Франкланд выдвинул теорию, которая позднее стала известна как теория валентности, согласно которой каждый атом обладает определенной способностью к насыщению(или валентностью). Прежде всего, с введением понятия "валентность" удалось уяснить различие между атомным весом и эквивалентным весом элементов. Даже в середине XIX века многие химики еще путали эти понятия.

Эквивалентный вес атома равен его атомному весу, деленному на его валентность.

Теория валентности сыграла важнейшую роль в развитии теории химии и в органической химии в особенности. После того, как была построена первая органическая молекула, стало совершенно ясно, почему органические молекулы, как правило, значительно больше и сложнее, чем неорганические.

Согласно представлениям Кекуле, углеродные атомы могут соединяться друг с другом с помощью одной или нескольких из четырех своих валентных связей, образуя длинные цепи. По-видимому, никакие другие атомы не обладают этой замечательной способностью в той мере, в какой обладает ею углерод.

Полезность структурных формул была настолько очевидной, что многие химики-органики приняли их сразу. Они признали полностью устаревшими все попытки изображать органические молекулы как структуры, построенные из радикалов. В результате было признано необходимым, записывая формулу соединения, показывать его атомную структуру.

Русский химик Александр Михайлович Бутлеров использовал эту новую систему структурных формул в разработанной им теории строения органических соединений. В 60-х годах XIX столетия он показал, как с помощью структурных формул можно наглядно объяснить причины существования изомеров.

Основные идеи теории химического строения Бутлеров изложил в докладе "О химическом строении вещества", прочитанном в химической секции Съезда немецких естествоиспытателей и врачей в Шпейере (сентябрь, 1861). Основы этой теории сформулированы таким образом:

  • 1) Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
  • 2) Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
  • 3) Свойства веществ зависят от их химического строения.
  • 4) По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.
  • 5) Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Основой теории Бутлерова является идея о порядке химического взаимодействия атомов в молекуле. Этот порядок химического взаимодействия не включает представления о механизме химической связи и физическом расположении атомов. Эта важная особенность теории химического строения позволяет всегда опираться на нее при построении физической модели молекулы.

Установив понятие химического строения, А.М. Бутлеров дал новое определение природы вещества: "химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением".

Таким образом, А.М. Бутлеров первый установил, что каждая молекула имеет определенное химическое строение, что строение определяет свойства вещества и что, изучая химические превращения вещества, можно установить его строение.

Взгляды А.М. Бутлерова на значение химических структурных формул вытекают из основных положений его теории. Бутлеров считал, что эти формулы должны быть не "типическими", "реакционными", а конституционными. В этом смысле для каждого вещества возможна лишь одна рациональная формула, на основании которой можно судить о химических свойствах.

Бутлеров впервые объяснил явление изомерии тем, что изомеры - это соединения, обладающие одинаковым элементарным составом, но различным химическим строением. В свою очередь, зависимость свойств изомеров и вообще органических соединений от их химического строения объясняется существованием в них передающегося вдоль связей "взаимного влияния атомов", в результате которого атомы в зависимости от их структурного окружения приобретают различное "химическое значение". Самим Бутлеровым и особенно его учениками В.В. Марковниковым и А.Н. Поповым это общее положение было конкретизировано в виде многочисленных "правил". Уже в XX в. эти правила, как и вся концепция взаимного влияния атомов, получили электронную интерпретацию.

Таким образом, Бутлеров открыл путь к планомерному созданию органических соединений, следуя которому органическая химия начинает одерживать одну победу за другой в соревновании с природой за создание материальных ценностей для удовлетворения потребностей людей.

К важным достижениям в строении молекул можно отнести открытие оптических изомеров Пастером и принятие трехмерной модели молекулы.

Содержание статьи

МОЛЕКУЛ СТРОЕНИЕ (молекулярная структура), взаимное расположение атомов в молекулах. В ходе химических реакций происходит перегруппировка атомов в молекулах реагентов и образуются новые соединения. Поэтому одна из фундаментальных химических проблем состоит в выяснении расположения атомов в исходных соединениях и характера изменений при образовании из них других соединений.

Первые представления о структуре молекул основывались на анализе химического поведения вещества. Эти представления усложнялись по мере накопления знаний о химических свойствах веществ. Применение основных законов химии позволяло определить число и тип атомов, из которых состоит молекула данного соединения; эта информация содержится в химической формуле. Со временем химики осознали, что одной химической формулы недостаточно для точной характеристики молекулы, поскольку существуют молекулы-изомеры, имеющие одинаковые химические формулы, но разные свойства. Этот факт навел ученых на мысль, что атомы в молекуле должны иметь определенную топологию, стабилизируемую связями между ними. Впервые эту идею высказал в 1858 немецкий химик Ф.Кекуле. Согласно его представлениям, молекулу можно изобразить с помощью структурной формулы, в которой указаны не только сами атомы, но и связи между ними. Межатомные связи должны также соответствовать пространственному расположению атомов. Этапы развития представлений о строении молекулы метана отражены на рис. 1. Современным данным отвечает структура г : молекула имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода.

Подобные исследования, однако, ничего не говорили о размерах молекул. Эта информация стала доступна лишь с разработкой соответствующих физических методов. Наиболее важным из них оказалась рентгеновская дифракция. Из картин рассеяния рентгеновских лучей на кристаллах появилась возможность определять точное положение атомов в кристалле, а для молекулярных кристаллов удалось локализовать атомы в отдельной молекуле. Среди других методов можно отметить дифракцию электронов при прохождении их через газы или пары и анализ вращательных спектров молекул.

Вся эта информация дает только общее представление о структуре молекулы. Природу химических связей позволяет исследовать современная квантовая теория. И хотя с достаточно высокой точностью молекулярную структуру рассчитать пока не удается, все известные данные о химических связях можно объяснить. Было даже предсказано существование новых типов химических связей.

Простая ковалентная связь.

Молекула водорода Н 2 состоит из двух идентичных атомов. По данным физических измерений длина связи – расстояние между ядрами атомов водорода (протонами) – составляет 0,70 Å (1 Å = 10 –8 см), что отвечает радиусу атома водорода в основном состоянии, т.е. в состоянии с минимальной энергией. Образование связи между атомами можно объяснить лишь в предположении, что их электроны локализуются в основном между ядрами, образуя облако отрицательно заряженных связывающих частиц и удерживая вместе положительно заряженные протоны.

Рассмотрим два водородных атома в основном состоянии, т.е. состоянии, в котором их электроны находятся на 1s -орбитали. Каждый из этих электронов можно рассматривать как волну, а орбиталь – как стоячую волну. При сближении атомов орбитали начинают перекрываться (рис. 2), и, как в случае обычных волн, возникает интерференция – наложение волн (волновых функций) в области перекрывания. Если знаки волновых функций противоположны, то при интерференции волны уничтожают друг друга (деструктивная интерференция), а если одинаковы, то происходит их сложение (конструктивная интерференция). При сближении атомов водорода возможны два исхода в зависимости от того, находятся ли волновые функции в фазе (рис. 2,а ) или в противофазе (рис. 2,б ). В первом случае произойдет конструктивная интерференция, во втором – деструктивная, при этом появятся две молекулярные орбитали; для одной из них характерна высокая плотность в области между ядрами (рис. 2,в ), для другой – низкая (рис. 2,г ) – фактически узел с нулевой амплитудой, разделяющей ядра.

Таким образом, при сближении атомов водорода и их взаимодействии 1s -орбитали образуют две молекулярные орбитали, а два электрона должны заполнить какую-то одну из них. Электроны в атомах всегда стремятся занять наиболее устойчивое положение – то, в котором их энергия минимальна. Для орбитали, показанной на рис. 2,в , характерна высокая плотность в области между ядрами, и каждый электрон, занявший эту орбиталь, будет бóльшую часть времени находиться вблизи положительно заряженных ядер, т.е. его потенциальная энергия будет мала. Напротив, у орбитали, показанной на рис. 2,г , максимальная плотность имеет место в областях, расположенных слева и справа от ядер, и энергия электронов, находящихся на этой орбитали, будет велика. Итак, электроны обладают меньшей энергией, когда они занимают орбиталь в , причем эта энергия даже меньше той, которая была бы у них при бесконечном удалении атомов друг от друга. Поскольку в данном случае имеются только два электрона, оба они могут занимать более выгодную с энергетической точки зрения орбиталь, если их спины антипараллельны (принцип Паули). Поэтому энергия системы, состоящей из двух атомов водорода, при сближении атомов уменьшается, и чтобы затем удалить атомы друг от друга, потребуется энергия, равная энергии образования стабильной молекулы водорода Н 2 . Заметим, что необходимым условием существования молекулы водорода является преимущественная локализация электронов между ядрами в соответствии с тем, что мы уже говорили выше. Молекулярную орбиталь в называют связывающей, а орбиталь г – разрыхляющей.

Рассмотрим теперь сближение двух атомов гелия (атомный номер 2). Здесь тоже перекрывание 1s -орбиталей приводит к образованию двух молекулярных орбиталей, одной из которых соответствует более низкая, а другой – более высокая энергия. На этот раз, однако, на орбиталях необходимо разместить 4 электрона, по 2 электрона от каждого атома гелия. Низкоэнергетическую связывающую орбиталь могут заполнить только два из них, два других должны занять высокоэнергетическую орбиталь г . Уменьшение энергии вследствие благоприятной локализации первой пары примерно равно увеличению энергии, обусловленному неблагоприятным расположением второй пары. Теперь сближение атомов не дает выигрыша в энергии, и молекулярный гелий Не 2 не образуется. Это удобно проиллюстрировать с помощью диаграммы (рис. 3); разные орбитали на ней представлены в виде энергетических уровней, на которых могут находиться электроны. Последние обозначены стрелками, направленными вверх и вниз, чтобы различить направления спинов. Два электрона могут занимать одну орбиталь, только если их спины антипараллельны.

Эти общие принципы выполняются при образовании молекул из атомов. Как только два атома сближаются настолько, что их атомные орбитали (АО) начинают перекрываться, появляются две молекулярные орбитали (МО): одна связывающая, другая разрыхляющая. Если на каждой из АО находится только по одному электрону, оба они могут занять связывающую МО с меньшей энергией, чем у АО, и образовать химическую связь. Связи такого типа, называемые теперь ковалентными, были давно известны химикам (представления о ковалентной связи легли в основу октетной теории связи, сформулированной американским физикохимиком Г.Льюисом в 1916). Их образование объясняли обобществлением пары электронов взаимодействующими атомами. Согласно современным представлениям, прочность связи зависит от степени перекрывания соответствующих орбиталей. Все сказанное выше позволяет предположить, что связи между атомами могут образовываться при обобществлении не только двух, но также одного или трех электронов. Однако они будут слабее обычных ковалентных связей по следующим причинам. При образовании одноэлектронной связи происходит уменьшение энергии только одного электрона, а в случае образования связи в результате обобществления трех электронов у двух из них энергия уменьшается, а у третьего, наоборот, увеличивается, компенсируя уменьшение энергии одного из первых двух электронов. В результате образующаяся трехэлектронная связь оказывается вдвое слабее обычной ковалентной.

Обобществление одного и трех электронов происходит при образовании молекулярного иона водорода Н 2 + и молекулы ННе соответственно. Вообще же связи такого типа встречаются редко, а соответствующие молекулы обладают высокой реакционной способностью.

Валентность. Донорно-акцепторные связи.

Все изложенное выше предполагает, что атомы могут образовывать столько ковалентных связей, сколько орбиталей у них занято одним электроном, однако так бывает не всегда. [В принятой схеме заполнения АО вначале указывают номер оболочки, затем тип орбитали и далее, если на орбитали находится более одного электрона, – их число (верхний индекс). Так, запись (2s ) 2 означает, что на s -орбитали второй оболочки находятся два электрона.] Атом углерода в основном состоянии (3 Р ) имеет электронную конфигурацию (1s ) 2 (2s ) 2 (2p x)(2p y), при этом две орбитали не заполнены, т.е. содержат по одному электрону. Однако соединения двухвалентного углерода встречаются очень редко и обладают высокой химической активностью. Обычно углерод четырехвалентен, и связано это с тем, что для его перехода в возбужденное 5 S -состояние (1s ) 2 (2s ) (2p x)(2p y)(2p z) с четырьмя незаполненными орбиталями нужно совсем немного энергии. Энергетические затраты, связанные с переходом 2s -электрона на свободную 2р -орбиталь, с избытком компенсируются энергией, выделяющейся при образовании двух дополнительных связей. Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным. Атом азота с электронной конфигурацией (1s ) 2 (2s ) 2 (2p x)(2p y)(2p z) не образует пятивалентных соединений, поскольку энергия, необходимая для перевода 2s -электрона на 3d -орбиталь с образованием пятивалентной конфигурации (1s ) 2 (2s )(2p x)(2p y)(2p z)(3d ), слишком велика. Аналогичным образом, атомы бора с обычной конфигурацией (1s ) 2 (2s ) 2 (2p ) могут образовывать трехвалентные соединения, находясь в возбужденном состоянии (1s ) 2 (2s )(2p x)(2p y), которое возникает при переходе 2s -электрона на 2р -АО, но не образует пятивалентных соединений, поскольку переход в возбужденное состояние (1s )(2s )(2p x)(2p y)(2p z), обусловленный переводом одного из 1s -электронов на более высокий уровень, требует слишком много энергии. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом. Соответствующие данные для первых 10 элементов периодической системы суммированы ниже. Под валентным состоянием атома понимают состояние, в котором он образует химические связи, например состояние 5 S для четырехвалентного углерода.

Таблица: Валентные состояния и валентности первых десяти элементов периодической таблицы
ВАЛЕНТНЫЕ СОСТОЯНИЯ И ВАЛЕНТНОСТИ
ПЕРВЫХ ДЕСЯТИ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Элемент Основное состояние Обычное валентное состояние Обычная валентность
H (1s ) (1s ) 1
He (1s ) 2 (1s ) 2 0
Li (1s ) 2 (2s ) (1s ) 2 (2s ) 1
Be (1s ) 2 (2s ) 2 (1s ) 2 (2s )(2p ) 2
B (1s ) 2 (2s ) 2 (2p ) (1s ) 2 (2s )(2p x)(2p y) 3
C (1s ) 2 (2s ) 2 (2p x)(2p y) (1s ) 2 (2s )(2p x)(2p y)(2p z) 4
N (1s ) 2 (2s ) 2 (2p x)(2p y)(2p z) (1s ) 2 (2s ) 2 (2p x)(2p y)(2p z) 3
O (1s ) 2 (2s ) 2 (2p x) 2 (2p y)(2p z) (1s ) 2 (2s ) 2 (2p x) 2 (2p y)(2p z) 2
F (1s ) 2 (2s ) 2 (2p x) 2 (2p y) 2 (2p z) (1s ) 2 (2s ) 2 (2p x) 2 (2p y) 2 (2p z) 1
Ne (1s ) 2 (2s ) 2 (2p x) 2 (2p y) 2 (2p z) 2 (1s ) 2 (2s ) 2 (2p x) 2 (2p y) 2 (2p z) 2 0

Указанные закономерности проявляются в следующих примерах:

Все сказанное выше применимо лишь к нейтральным атомам. У ионов и соответствующих атомов число электронов различается; ионы могут обладать той же валентностью, что и другие атомы с таким же числом электронов. Так, у ионов N + и В – столько же электронов (шесть), что и у нейтрального атома углерода, и соответственно они четырехвалентны. Ионы аммония NH 4 + и гидрида бора ВН 4 – образуют комплексные соли и по своей электронной конфигурации аналогичны метану СН 4 .

Предположим теперь, что молекулы аммиака NH 3 и трифторида бора BF 3 сближаются друг с другом. При переходе электрона с атома азота на атом бора мы получим два иона, NH 3 + и BF 3 – , каждый с незаполненной орбиталью, что может привести к образованию ковалентной связи. Молекула H 3 N–BF 3 является электронным аналогом 1,1,1-трифторэтана Н 3 С–СF 3 . Связи, образующиеся в результате межатомного переноса электрона с последующим образованием ковалентной связи, называются донорно-акцепторными.

Геометрия молекул. Гибридизация.

Все атомные орбитали, кроме s , сферически несимметричны, и степень их перекрывания с АО других атомов зависит от взаимной ориентации орбиталей. Так, р -АО будет перекрываться с АО другого атома в наибольшей степени, если последняя расположена вдоль ее оси (рис. 4,а ). Это означает, что связи, образующиеся в результате перекрывания АО, должны обладать специфической геометрией. Рассмотрим атом углерода в 5 S -состоянии. У него имеется по одному электрону на трех р -орбиталях и на четвертой, сферически симметричной s -орбитали. Казалось бы, три связи, которые он образует, будут отличаться от четвертой, при этом р -связи будут располагаться во взаимно перпендикулярных направлениях вдоль осей р -АО. На самом деле наблюдается другая, совершенно симметричная картина. Проще всего объяснить ее следующим образом. Набор орбиталей (2s )+(2p x)+(2p y)+(2p z) – это некий объем «орбитального пространства», способный удерживать четыре пары электронов. Мы можем получить эквивалентное описание этой ситуации, смешав все орбитали и разделив их сумму на четыре равные части, так что на каждой из образовавшихся смешанных, или гибридных, орбиталей будет располагаться одна пара электронов. Следовательно, 5 S -состояние углерода можно представить в виде (1s ) 2 (t 1)(t 2)(t 3)(t 4), где t i – гибридные орбитали, что с успехом объясняет образование симметричной молекулы четырехвалентного углерода. Рассмотрим теперь, что произойдет при смешивании р -АО с s -АО. Усиление одной половины р -гантели при интерференции неизменно будет сопровождаться ослаблением другой ее половины (рис. 4,б ), в результате чего образуется асимметричная гибридная орбиталь (рис. 4,в ). Она будет эффективно перекрываться другими орбиталями, ориентированными в том же направлении, с образованием достаточно прочных связей. Это одна из причин, почему атом углерода предпочитает образовывать связи через гибридизацию АО. Но есть и другая причина. Рассмотрим типичное соединение четырехвалентного углерода, например метан СН 4 . В нем каждый водородный атом удерживается вблизи атома углерода парой обобществленных электронов. Эти пары взаимно отталкиваются, и оптимальной является такая конфигурация молекулы, при которой они находятся друг от друга на максимально возможном расстоянии. В этом случае атомы водорода будут располагаться в вершинах правильного тетраэдра, а атом углерода – в его центре. Такая геометрия может реализоваться с помощью т.н. sp 3 -гибридных орбиталей, каждая из которых образована 1/4 частью 2s -АО и одной из 2р -АО. Все эти орбитали одинаковы по форме, легко образуют связи и направлены от углеродного атома в центре правильного тетраэдра к четырем его вершинам (рис. 1,г ).

Атом азота мог бы образовать связи только с помощью 2р -АО, углы между которыми составляли бы 90°, но взаимное отталкивание пар связывающих электронов и пар несвязывающих электронов 2-й оболочки минимизируется, если в образовании связей участвуют «тетраэдрические» sp 3 -орбитали. Здесь, однако, проявляется еще одна особенность. Для иона N + конфигурации (1s ) 2 (2s )(2p ) 3 и (1s ) 2 (t ) 4 , где t sp 3 -гибридные АО, действительно эквивалентны. Другое дело – нейтральный атом азота, 7-й электрон которого может занять либо 2s -АО, и тогда получится конфигурация (1s ) 2 (2s )(2p ) 4 , либо t -АО в конфигурации (1s ) 2 (t ) 5 . Поскольку 2s -АО расположена ниже 2p -АО и, следовательно, ниже любой sp -гибридной орбитали, первая конфигурация оказывается энергетически более выгодной и можно было бы ожидать, что при прочих равных условиях трехвалентный азот предпочтет «негибридизованную» конфигурацию. Однако взаимного расталкивания пар электронов, по-видимому, достаточно для того, чтобы произошла гибридизация, при которой валентные углы в таком соединении азота, как аммиак NH 3 , близки к соответствующим углам в правильном тетраэдре, т.е. к 109°. То же относится и к двухвалентному кислороду в составе молекулы воды Н 2 О. Во всех этих случаях связанные атомы занимают три (или две) вершины тетраэдра, а пары неподеленных электронов 2-й оболочки – оставшиеся вершины.

Аналогичные рассуждения применимы и к другим типичным элементам IV, V и VI групп периодической таблицы. Четырехвалентные элементы IV группы (Si, Ge, Sn и Pb) всегда образуют тетраэдрические структуры, однако другие элементы V и VI групп (P, S, As, Se, Sb, Te) отличаются от азота и кислорода и образуют соединения с валентными углами, близкими к 90°. По-видимому, из-за большего размера этих атомов взаимного отталкивания валентных электронов оказывается недостаточно, чтобы стала возможна гибридизация, наблюдаемая для N и О.

Связи с участием d-орбиталей.

В отличие от азота атом фосфора может образовывать пять ковалентных связей. В основном состоянии фосфор имеет конфигурацию (1s ) 2 (2s ) 2 (2p ) 6 (3s ) 2 (3p x)(3p y)(3p z) и является трехвалентным, образуя, как и азот, соединения типа PF 3 . Однако в этом случае возможно участие 3s -электронов в образовании связей, поскольку d -АО (3d ) имеют такое же главное квантовое число. Действительно, известны и соединения пятивалентного фосфора типа PF 5 , где фосфор находится в валентном состоянии +5, согласующемся с электронной конфигурацией (1s ) 2 (2s ) 2 (2p ) 6 (3s )(3p x)(3p y)(3p z)(3d ); связи с этом случае образуются в результате sp 3 d -гибридизации (т.е. в результате смешивания одной s -, трех р - и одной d -АО). Оптимальной структурой с точки зрения уменьшения взаимного отталкивания пар валентных электронов является треугольная бипирамида (рис. 5,а ). Сера может быть не только двухвалентной, но также четырех- (SF 4) и шестивалентной (SF 6), находясь в состояниях (1s ) 2 (2s ) 2 (2p ) 6 (3s ) 2 (3p x)(3p y)(3p z)(3d ) и (1s ) 2 (2s ) 2 (2p ) 6 (3s )(3p x)(3p y)(3p z)(3d 1)(3d 2) соответственно. В соединениях четырехвалентной серы взаимное отталкивание электронов 3-й оболочки оптимизируется при гибридизации орбиталей всех ее электронов. Структура соединений этого типа подобна структуре PF 5 , но одна из вершин треугольной бипирамиды занята парой неподеленных электронов 3-й оболочки (рис. 5,б ). В соединениях шестивалентной серы взаимное отталкивание электронов минимизируется при sp 3 d 2 - гибридизации, когда все орбитали эквивалентны и направлены к вершинам правильного октаэдра (рис. 5,в ).

До сих пор мы рассматривали только те элементы периодической таблицы, у которых оболочки, имеющие d -орбитали, либо целиком заполнены, либо совсем свободны. Остановимся теперь на переходных элементах, у которых эти оболочки заполнены не до конца. Энергия электронов на разных орбиталях 3-й оболочки возрастает в следующем порядке: 3s p d; все орбитали расположены слишком далеко от орбиталей 2-й оболочки, чтобы могла произойти их гибридизация. В то же время 3d -орбитали и орбитали 4-й оболочки энергетически достаточно близки, так что возможно взаимодействие 3d -, 4s - и 4р -орбиталей, и переходные элементы от Sс до Cu могут образовывать ковалентные связи путем гибридизации этих орбиталей. Во всех случаях, когда имеются две 3d -орбитали, образование связей происходит через d 2 sp 3 -гибридизацию, при этом гибридные орбитали по форме похожи на sp 3 d 2 -орбитали. Элементы в соединениях этого типа шестивалентны, а молекулы самих соединений имеют форму октаэдра (рис. 5,в ). Большинство из них содержат ионы, и можно считать, что они образовались в результате взаимодействия иона центрального атома с шестью молекулами, каждая из которых имеет пару неподеленных электронов. Ковалентные связи с центральным ионом называются донорно-акцепторными. Простой пример такого соединения – гексаммин-ион трехвалентного кобальта Co(NH 3) 6 3+ . Ион Co 3+ имеет электронную конфигурацию (1s ) 2 (2s ) 2 (2p ) 6 (3s ) 2 (3p ) 6 (3d 1) 2 (3d 2) 2 (3d 3) 2 , причем полностью заняты три из пяти его 3d -орбиталей, а две 3d -АО свободны. Эти орбитали могут гибридизоваться с 4s - и 4р -АО с образованием шести октаэдрических d 2 sp 3 -орбиталей; все они свободны и могут участвовать в образовании акцепторных связей с шестью молекулами аммиака.

Другая картина наблюдается, когда центральный атом имеет только одну свободную d -орбиталь. В качестве примера можно привести двухзарядный ион никеля Ni 2+ , у которого оптимальная конфигурация возникает при образовании четырех связей с помощью dsp 2 -орбиталей. Эти орбитали лежат в одной плоскости под углом 90° друг к другу.

Кратные связи.

Одно из известных соединений углерода – этилен С 2 Н 4 , в котором каждый атом углерода связан только с тремя другими атомами. По аналогии с бором можно предположить, что оптимальной будет такая геометрия, при которой sp 2 -гибридные орбитали лежат в одной плоскости. В этом случае у каждого атома углерода будет по одной неиспользованной (в sp 2 -гибридизации) р -орбитали, которая содержит один из четырех валентных электронов. Если все шесть атомов этилена лежат в одной плоскости, то две неиспользованные р -АО перекрываются друг с другом так, как это изображено на рис. 6,а . Такое перекрывание приводит к образованию пары МО: одной связывающей (рис. 6,б ) и одной разрыхляющей (рис. 6,в ). Поскольку каждая из них содержит только один электрон, они могут образовать низкоэнергетическую связывающую МО. Так возникает дополнительная связь между атомами углерода, и структурная формула этилена имеет вид

Этот новый тип связи отличается от тех, которые образуются при перекрывании орбиталей по линии соединения атомов, в двух отношениях. Связи последнего типа, одинарные связи С–С, аксиально симметричны, и поэтому на них не влияет вращение соединяемых ими групп. Напротив, перекрывание р -орбиталей зависит от того, лежат ли все шесть атомов в молекуле этилена в одной плоскости, поскольку для оптимального перекрывания р -АО должны быть параллельны. Таким образом, если вращение вокруг одинарной связи С–С может происходить относительно свободно, то вокруг двойной связи С=С оно сильно затруднено. И действительно, молекула этилена – это жесткая плоская структура. Второе различие касается степени перекрывания орбиталей. Поперечное перекрывание р -АО относительно неэффективно, и, следовательно, связи такого типа слабые. Поэтому этилен химически более активен, чем насыщенные соединения, имеющие только одинарные связи.

S -связями, а при поперечном перекрывании – p -связями.

Молекулы некоторых соединений, например ацетилена С 2 Н 2 , содержат тройные связи. В них каждый атом углерода связан со своим соседом s -связями, образованными sp -гибридными орбиталями. Они коллинеарны, поэтому четыре атома в молекуле ацетилена лежат на одной прямой. Остальные р -АО атомов углерода при перекрывании образуют две p -связи.

Ароматические соединения.

Молекулу бензола С 6 Н 6 представляют в виде шестичленного кольца из атомов углерода, к каждому из которых присоединен еще и атом водорода (рис. 7,а ). Поскольку у каждого углеродного атома три соседа, можно предположить, что соответствующие связи образуются в результате sp 2 -гибридизации и лежат в одной плоскости под углом 120° друг к другу. И в самом деле, молекула бензола – плоская структура. Неиспользованные р -АО атомов углерода могут образовывать p -связи (рис. 7,б ), однако для бензола ситуация оказывается сложнее, чем в рассмотренных выше случаях, когда связи образовывались в результате перекрывания пар АО. В бензоле 2р -АО каждого углеродного атома должна перекрываться одинаково эффективно с 2р -АО всех соседних атомов. (Здесь можно провести аналогию с многократной интерференцией волн, сопоставив перекрывание орбиталей в молекуле бензола с перекрыванием волн, дифрагировавших на двух щелях или на дифракционной решетке.) В результате для бензола получим набор кольцевых молекулярных орбиталей, охватывающих все шесть атомов углерода (рис. 7,в ). Полная энергия системы при такой электронной конфигурации меньше, чем если бы р -АО попарно образовывали обычные p -связи. И действительно, бензол более стабилен и менее активен, чем можно было ожидать исходя из его «классической» структуры (рис. 7,г ). Все связи в его молекуле симметричны, и их длины одинаковы, а по прочности они занимают промежуточное положение между одинарной и двойной связями. Известны и другие соединения, в которых p -электроны участвуют в образовании «многоцентровых» МО и для которых наблюдаются аналогичные особенности длин связей и химической активности.

Соединения, содержащие многоцентровые связи.

Даже в таких простых молекулах, как СН 4 , отдельные молекулярные орбитали обязательно взаимодействуют друг с другом. Поэтому представление о локализованных двухцентровых ковалентных связях можно рассматривать лишь как некое приближение. Как правило, однако, эти взаимодействия слабые, поскольку степень перекрывания орбиталей невелика (за исключением p -МО в ароматических и сходных с ними соединениях). Тем не менее нельзя исключить существования молекул с многократно перекрывающимися АО, ответственными за образование связей путем обобществления электронов тремя и более атомами. В качестве примера можно привести диборан В 2 Н 6 , у которого имеется шесть пар валентных электронов; этого недостаточно для образования семи связей, необходимых для создания классической структуры Н 3 В–ВН 3 . Х.Лонге-Хиггинс предложил структуру диборана, представленную на рис. 8,а . В этой структуре центральные атомы водорода соединены трехцентровыми связями, образующимися в результате перекрывания sp 3 -гибридных орбиталей двух атомов бора с 1s -АО атома водорода (рис. 8,б ). Четыре из шести пар валентных электронов участвуют в формировании обычных s -связей с «концевыми» водородными атомами, а две пары – трехцентровых связей. Более сложный пример многоцентровой связи дает молекула дибензолхрома (рис. 8,в ). Бензольные кольца в этой молекуле соединяются с атомом металла сложными многоцентровыми орбиталями, образующимися в результате перекрывания p -МО бензола с 3d -, 4s - и 4р -АО центрального атома. Известны и другие аналогичные соединения, имеющие структуру типа сандвича.

Перспективы.

К настоящему времени общие принципы строения молекул можно считать установленными. Разработаны физико-химические методы определения структуры сложных молекул, в том числе и биологических. В ближайшее время возможен прогресс в двух связанных между собой направлениях. Следует ожидать, во-первых, повышения точности квантовомеханических расчетов и, во-вторых, усовершенствования экспериментальных методов измерения соответствующих молекулярных параметров.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал