Испытание изоляции проводов. Измерения мегаомметром

Главная / Электролаборатория

Мегаомметр – крайне полезный прибор, используемый для измерения сопротивления изоляции электрических кабелей, обмоток трансформаторов, а также для проверки электроинструментов.

Параметры сопротивления изоляции имеют важнейшее значение для находящихся в эксплуатации электросистем и установок. Проверка данной характеристики входят в состав обязательных электроизмерений, проводимых для определения состояния, работоспособности и безопасности электрических сетей.

Виды и особенности мегаомметров

Сегодня на рынке представлены мегаомметры различных марок и типов, предназначенные для измерения изоляции с напряжением до 100, 500, 1000 и 2500 В, установленная величина напряжения генерируется самим измерительным устройством. На рисунке ниже представлена принципиальная схема мегаомметра ЭС0202.


Различаются между собой не только генерируемым напряжением, но также классом точности. К примеру, пользующийся большой популярностью у профессиональных специалистов прибор марки М4100, работает с погрешностью не более 1%. Для устройств Ф4101 нормальная погрешность составляет не более 2,5%. Чем выше значение исследуемой электросети или установки, тем более точным должен быть используемый для измерения мегаомметр. Питание измерительных средств может осуществляться от встроенных аккумуляторов или от сетей переменного тока напряжением 127-220 В.

Выбирать средство для испытаний электрической системы необходимо с учетом номинального сопротивления в сети, напряжения и других индивидуальных особенностей.

Чаще всего проводят испытания в сетях и устройствах с номинальным напряжением до 1000 В (электрические двигатели, цепи вторичной коммутации и другие). Для измерений в таких условиях необходимо использовать мегаомметры, рассчитанные на работу в цепях от 100 В до 1000 В. Если номинальные параметры сети выше 1000 В, необходимо использовать измерительные средства, работающие с напряжением до 2500 В.

Порядок проведения измерений

Измерения мегаомметром проводятся в несколько этапов. На рисунке ниже представлена схема подключения устройства в трехфазной цепи.


Сначала необходимо измерить сопротивление изоляции соединительных проводников, полученный результат должен соответствовать верхнему пределу измерительного устройства.

  • установка наибольшего из возможных значений в случаях неизвестных параметров сопротивления изоляции;
  • устанавливать предел измерений следует с учетом того, что наибольшая точность полученных результатов достигается за счет отсчета показаний в пределах рабочей шкалы устройства.

При испытаниях электрики обязательно следует убедиться в отсутствии напряжения на проверяемом участке электрической цепи.

Когда все предварительные работы и проверки выполнены, необходимо закоротить или отключить от цепи все элементы и устройства с пониженными значениями сопротивления изоляции и с пониженным напряжением, к примеру, полупроводники, конденсаторы и другие.

Цепь на время проведения электроизмерительных работ необходимо заземлить.

Теперь можно подключить устройство к исследуемой цепи. Испытания проводятся путем вращения ручки генератора мегаомметра с постоянной скоростью в 120 оборотов в минуту. Измерения длятся в течение 60 секунд, после чего можно записать результаты.

При проведении электроизмерительных работ на приборах и системах с большой ёмкостью, фиксировать показания мегаомметра необходимо после того, как стрелка полностью успокоится.

В целях безопасности, после проведения испытаний, перед отсоединением мегаомметра от электрической цепи, необходимо снять остаточный электрический заряд с устройства путем его кратковременного заземления. На рисунке ниже представлена схема подключения цифрового измерителя для проверки изоляции проводки.


При проведении электроизмерений следует учитывать, что результаты исследования могут быть искажены из-за различных внешних факторов, к примеру, из-за увлажнения изолированных частей электросети или электрической установки, что приводит к возникновению токов утечки. В этом случае на изоляцию необходимо наложить токоотводящий проводник, присоединив его к зажиму «Э» мегаомметра.

Правила соединения мегаомметра с цепью через зажим «Э»:

  • при проверке изоляции электрического кабеля, изолированного от земли, зажим соединяют с броней провода через проводник;
  • при проверке сопротивления изоляции между обмоток зажим «Э» соединяют с корпусом электрической машины;
  • при измерении на обмотках трансформатора, зажим «Э» подключают к устройству под юбкой выходного изолятора.

Важно помнить, что измерение сопротивления изоляции в осветительных и силовых системах должно проводиться при включенных выключателях, отключенных электрических приемниках, отключенных плавких вставок и вывернутых лампах.

Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением. Также запрещено проводить измерения на воздушных линиях электропередач при грозе.

Большинство проводников, используемых в тех или иных целях, имеют вид проволоки различной толщины, покрытой слоем изоляции. Если сопротивление идеального проводника должно быть бесконечно малым, то сопротивление идеальной изоляции должно быть бесконечно большим. Однако реалии таковы, что сопротивление у изолирующего слоя не настолько велико, чтобы его нельзя было измерить. При определённых условиях через него течёт так называемый «ток утечки».

Его величина может быть недопустимо большой. Постепенно, однако, довольно быстро свойства изоляционного покрытия могут существенно ухудшиться. При этом какое-либо дополнительное внешнее воздействие, например, механическое, может нарушить целостность ослабленной изоляции. Далее высока вероятность короткого замыкания в месте повреждения, а также её возгорание из-за высокой температуры в зоне короткого замыкания. Поэтому надо периодически проверять состояние изоляции на предмет величины токов утечки в ней для предотвращения разрушительных последствий от её деградации.

Производители кабельно-проводниковой продукции заявляют весьма долгий срок службы своих изделий – до десяти лет или дольше. Но всё зависит от соблюдения условий эксплуатации, рекомендуемых этими производителями. А поскольку почти всегда свойства изоляционного покрытия ухудшают

  • попадание прямых солнечных лучей;
  • перепады с повышением напряжения;
  • температурные колебания;
  • свойства окружающей среды, ускоряющие старение изоляции;
  • мельчайшие механические повреждения

Срок нормального функционирование получается меньше заявленного производителем.

Проверка мегомметром

В большинстве случаев, проверить состояние изоляции можно используя разновидность тестера – мегомметр . Это специализированный прибор, который сделан именно для этого. При его использовании создаётся электрическая цепь, в которой включён воображаемый резистор численно равный величине сопротивления изоляции в месте измерения.

ЭДС в такой цепи создаёт встроенный в мегомметр генератор, развивающий достаточно высокое напряжение. Его величина может достигать трёх киловольт. Результаты измерений мегомметром позволяют определить параметры состояния изоляционного покрытия, по которым делаются расчёты коэффициентов для оценки перспектив дальнейшего использования тестируемых проводов и кабелей.

Цель выполняемых измерений

Технический паспорт содержит информацию о сопротивлении изоляции проводов и кабелей. Поэтому при её регулярном контроле можно обнаружить изменения, происходящие с ней в существующих условиях эксплуатации. Получаемые по результатам контроля данные позволяют предотвратить такие события как удар током при контакте с проводом или кабелем, перегрев или воспламенение провода или кабеля.

Если выполнение контроля требует определённых времени и средств, то последствия аварий от пожаров или ударов током получается намного более ощутимыми. Поэтому важно своевременно выявить те участки с проводами или кабелями, которые уже пребывают в состоянии, требующем их замены по причине износа изоляционного слоя. И эту замену необходимо сделать до появления проблем с ним связанных.

В электрических сетях особенно с напряжением более 1000 Вольт применяется много электрооборудования, в котором используются масло и прочие материалы с очень мощным горением. Например, распределительная подстанция, в которой в каком-то одном месте воспламенилась изоляция, может быстро стать одним большим пожаром. А это значит, что противопожарная безопасность всей подстанции имеет связь с состоянием изоляционного слоя проводов и кабелей проложенных в ней.

Данные результатов контроля их изоляции подлежат учёту в специальных протоколах. Они составляются в ходе выполнения необходимых измерений измерительными лабораториями и только в таком случае могут предъявляться соответствующим государственным контролирующим органам выполняющим проверку объектов на противопожарную безопасность. Протоколы, составленные иным путём, не имеют юридической силы.

Периодичность проверки

Количество проверок сопротивления изоляции связано со спецификой назначения проводов и кабелей. Если рассматривать провода электропроводки, прокладываемые в жилых и производственных помещениях, проверить их надо не менее двух раз. Первый раз проверку надо сделать после того как провода проложены и закреплены в стене. Этот этап проверки даёт возможность найти микроповреждения изоляции. Затем наносится первый слой штукатурки.

После того как слой высохнет, выполняется второй этап проверки проводки. Если на этом этапе будет обнаружен один или несколько участков проводки с повреждениями изоляционного слоя по слишком значительному току утечки, их можно будет заменить до нанесения чистового слоя штукатурки.

В общем случае на промышленных предприятиях, где работают электроустановки с напряжением до 1000 Вольт, Правилами технической эксплуатации электроустановок потребителей предписано следующее.

  • Периодичность проверки изоляции электропроводки и осветительных сетей один раз в три года для всех помещений за исключением особо опасных помещений и оборудования установленного вне помещений, для которых проверка необходима один раз в год.

В упомянутых Правилах есть таблица, изображение которой показано далее для более детального ознакомления.



Но поскольку минимальная периодичность проверки проводов и кабелей составляет один раз в год, это не является ограничением. На предприятиях в зависимости от условий в тех или иных помещениях устанавливаются собственные правила более частых проверок изоляции. Например, в структурах образования, здравоохранения, общественного питания, торговли и некоторых других внутренними приказами устанавливается периодичность проверок сопротивления изоляции один раз в шесть месяцев.

Другие приборы для проверки изоляции

Мегомметр является измерительным прибором, который уже много лет используется для измерения сопротивления изоляционного слоя проводов и кабелей. Но он громоздкий и неудобный в использовании, поскольку в процессе проверки изоляции необходимо вращая рукоятку вручную вырабатывать высокое напряжение для «прозвона » изоляционного слоя. Надёжность и долговечность мегомметра объясняют использование этих приборов и в наше время.

Современные измерители сопротивления изоляции это цифровые приборы, которым не требуется высокое напряжение как в мегомметре. Они позволяют бесконтактным способом проверять не только изоляционный слой, но и другие параметры провода или кабеля – напряжение, ток, частоту. Такие приборы показаны на изображении ниже:


В домашних условиях проверка и измерение сопротивления изоляции проводов и кабелей также должна выполняться периодически. Возможно ухудшение её свойств от повышенной влажности и сырости, повреждения при выполнении каких-либо работ, например установка шурупов или гвоздей в стене и повреждение электропроводки ими. Изоляцию могут повредить грызуны. В конце концов, всегда присутствует фактор её старения.

Для проверки можно использовать мультиметр (тестер) в котором есть диапазон измерения в несколько мегом. Проверять изоляцию надо только при отключенном напряжении. Лучше всего вынуть пробки на щитке и только после этого начинать проверку. Если прибор показывает подозрительно небольшое сопротивление изоляции дополнительный «прозвон» лучше всего выполнить специальным прибором типа мегомметра.

Контроль сопротивления изоляции хотя и требует затрат определённых усилий и времени, но позволяет предотвратить пожар, последствия которого будут несравнимо большими.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Работа с мегаомметром

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120–140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал