Презентация на тему "генотип - целостная система". Научная работа: Гены в нашей жизни Мой генотип и мои личные заслуги

Главная / Освещение

Введение………………………………………………………………………

Исследование генома человека ……………………………………………

Прогресс генетики …………………………………………………………

Достижения и проблемы современной генетики ………………………

Медико-генетическое консультирование ………………………………

Проблема клонирования животных и человека …………………………

Генетика и проблема рака …………………………………………………

Генетический мониторинг …………………………………………………

Заключение …………………………………………………………………

Литература …………………………………………………………………

Введение

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области

вирусогенетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках

млекопитающих, включая клетки человека.

Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с

включением клеточного и организменного уровней.

XX век стал веком величайших открытий во всех областях естествознания, веком научно-технической революции, которая изменила и облик Земли, и облик ее обитателей. Возможно, одной из основных отраслей знания, которые будут определять облик нашего мира в следующем веке, является генетика. С этой сравнительно молодой наукой всегда было связано немало споров и противоречий, но последние достижения генетики и генной инженерии, которая вполне может считаться самостоятельной дисциплиной, в

таких областях, как исследование генома человека и клонирование, хотя и открыли широкие перспективы развития биотехнологий и лечения различных заболеваний, сделали возможным изменение самой сущности человека, породив

тем самым множество вопросов этического, даже, скорее, философского, характера. Имеет ли человек право изменять то, что создано природой? Имеет ли право исправлять ее ошибки и, если да, то где та грань, которую нельзя переступать? Не обернутся ли научные знания катастрофой для всего

человечества, как это случилось, когда была открыта энергия атома, уничтожившая Хиросиму, Нагасаки и Чернобыль? На эти вопросы все отвечают по-разному, поэтому в своей работе я попытаюсь не только рассказать о самих проблемах научной этики, связанных с генетикой, но и по возможности

отразить различные точки зрения на эти проблемы.






Кодоминирование - Признаки проявляются одновременно, т.е. проявляются оба аллеля одного гена. Пример: Наследование IV группы крови. Система АВ0 у человека, где А и В доминантные гены (кодоминанты), а 0 рецессивный. Группа кровиГенотип I (0)ii (I 0 I 0) II (A)I A I A, I A I 0 (I A i) III (B)I B I B, I B I 0 (I B I 0) IV (AB)IAIBIAIB


Решите задачи: 1.У матери первая группа крови, у отца - неизвестна. Ребенок имеет первую группу крови. Может ли отец иметь вторую группу крови? 2.Женщина, имеющая III группу крови, родила ребенка со II группой крови. Определить возможные группы крови отца ребенка и генотип матери.










III. Полимерия - Явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. -Чем больше таких генов, тем ярче проявляется признак. - Пример: Цвет кожи, удойность коров - Явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. -Чем больше таких генов, тем ярче проявляется признак. - Пример: Цвет кожи, удойность коров - Аллели разных генов обозначают А 1 А 1 А 2 А 2, а 1 а 1 а 2 а 2


Задача: Сын белой женщины и чернокожего мужчины женится на белой женщине. Может ли ребенок от этого брака быть темнее своего отца? А 1 А 1 А 2 А 2 (или ААВВ) - негры А 1 а 1 А 2 А 2 (АаВВ), А 1 А 1 А 2 а 2 (ААВв) – темные мулаты А 1 а 1 А 2 а 2 (АаВв), А 1 А 1 а 2 а 2 (ААвв), а 1 а 1 А 2 А 2 (ааВВ) – средние мулаты А 1 а 1 а 2 а 2 (Аавв), а 1 а 1 А 2 а 2 (ааВв) – светлые мулаты а 1 а 1 а 2 а 2 (аавв) – белые ________________________ P а 1 а 1 а 2 а 2 x А 1 А 1 А 2 А 2 G а 1 а 2 А 1 А 2 F 1 А 1 а 1 А 2 а 2 x а 1 а 1 а 2 а 2


F 1 А 1 а 1 А 2 а 2 x а 1 а 1 а 2 а 2 G А 1 А 2, А 1 а 2, а 1 А 2, а 1 а 2 ; а 1 а 2 F 2 А 1 а 1 А 2 а 2, А 1 а 1 а 2 а 2, а 1 а 1 А 2 а 2, а 1 а 1 а 2 а 2 сред.мулат светлый мулат светлый мулат белый Соотношение 1:2:1, ребенок не может быть темнее своего отца


IV. Плейотропия (от греч. Pleion – многочисленный и tropos - направление) - один ген определяет развитие нескольких признаков и свойств организмов. Особенность: раннее проявление в организме; Пример: У мышей ген, вызывающий недоразвитие всех костей. У человека – синдром Марфана – заболевание соединительной ткани человека.


Американского генетика Gregory A. Petsko, в которой автор расскрывает интересную точку зрения на сущность анализа генетических вариантов в 23andme. Статья написана на очень легком языке, и автор сдабривает эту легкость изрядной долей здрового юмора. Поскольку тема тестирования в 23andme интересна значительному проценту наших читателей, то ниже мы приводим перевод статьи на русский.

» Выходит, что я не потомок Чингисхана. Я уверен, что это обстоятельство удивляет вас не меньше, чем меня. Судя по тому, что мы слышим от людей, которые используют геномику для отслеживания путей человеческой миграции, огромный процент представителей человеческой расы на самом деле произошли от Чингисхана. Но только не я.

Это одна из тех вещей, которые я узнал после того как представил образец моей ДНК для геномного анализа однонуклеотидных полиморфизма (SNP) в одной из компаний, созданных для выполнения тестов для ‘обычных людей’ за плату. Мне было любопытно посмотреть, какого рода информацию они предоставляют, и честно говоря, я хотел узнать кое-что о своем собственном геноме. Поэтому следуя инструкциям компании, я плюнул несколько раз в пластиковый контейнер, пока не набрался необходимый объем слюны, отправил его по почте, и стал ждать результатов. Обнаружат ли у меня аллель, которая обречет меня на редкую генетическое заболеваний, когда я войду в преклонный возраст? А что, если мой риск развития сердечных болезней, диабета, — или любого из тысяч других недугов терзающих плоть — гораздо выше среднестатистического? Окажусь ли я потомком Чингисхана?

Компания 23andme, в которую я направил образец слюны, выполняет сиквенирование или гибридизацию ДНК не сама, а в отдельной специализированной лаборатории, c которой у 23andme заключен договор. После того, как лаборатория получила мои образцы, мою ДНК экстрагировали из клеток задней стенки щеки в слюне и амплифицировали с помощью ПЦР достаточное для стадии генотипирования количество ДНК. Далее, ДНК разрезали рестрикцией на меньшие, более управляемые фрагменты. Эти фрагменты ДНК затем нанесли на ДНК-чип, который в данном конкретном случае представляет собой небольшую стеклянную пластину с миллионами микроскопических шариков-головок на поверхности. К каждой головке прикрепляются ДНК-зонды , комплементарные тем сайтам человеческого генома, в которых расположены наиболее важные снипы. Для каждого SNP, имеется два ДНК-зонда соответствующих «нормальной» и «мутировавшей» версии (аллелю) каждого SNP. Таким образом, гибридизация сайта ДНК с конкретным ДНК -зондом, обнаруживается при помощи флуоресценции, которая, как и в случае любого другого эксперимента c ДНК-чипом, служит для идентификации аллели.

ДНК-чип, который использует 23andme, включает в себя 550000 снипов, разбросаных по всему геному. Хотя эти 550 тысяч снипов являются лишь частью из всех находящихся в геноме человека снипов (по разным оценкам, их количество достигает 10 миллионов) , набор этих 550 000 снипов тщательно продуман — сюда входят специально подобраные тэг-снипы (снипы-метки). Поскольку многие снипы характеризуются высоким неравновесным сцеплением между собой, генотип многих снипов ​ может часто определяется, исходя из вывленного при тестирования генотипа того SNP , который является «тэгом-меткой» своей группы или LDблока снипов. Благодаря процедуре использования снипов-меток, можно максимизировать информацию от каждого фактически проанализированного SNP, сохраняя при этом низкую стоимость самого анализа.

Кроме того, многие ДНК компании имеют специально подобранные десятки тысяч дополнительных снипов, ​имеющих высокие диагностические перспективы и подробно изученные в научной литературе. Соответствующие этим снипам зонды добавляются в модифицированный ДНК-чип Illumina. Эти снипы включают факторы риска для общих и редких заболеваний человека, а также генетически наследуемые признаки (дальтонизм и так далее) .

Доступ к окончательным данным осуществляется через веб-сайт компании, который включает в себя возможность загрузки всего набор информации по проанализированным SNP-ам. После того, как я получил уведомление о готовности моих результатов, то, будучи ученым, выполнил самостоятельный биоинформатический анализ своих данных. Нужно однако признать, что сайт 23andme на самом деле cодержит качественный и интуитивно понятный интерфейс, обеспечивающий клиенту конкретную информацию о конкретных аллелей связанных с наследственными факторами конкретных различных заболеваний, физических черт, и так далее.

Вот некоторые из вещей, которые я узнал о себе:

Согласно геномным данным, мой цвет глаз, вероятно, коричневый (хорошее предположение) . Я должен быть лактозотолерантным (так оно и есть). Данные моего цитохрома P450 показывают, что я был бы весьма чувствительным к антикоагулянту варфарину, если я когда-либо должен был принимать его (надеюсь, что я никогда это не сделаю — это отвратительный препарат), снип в гене рецептора андрогенов свидетельствует о значительном снижении риска мужского типа облысения (у меня есть новости для ученных, я слегка полысел на макушке). По SNP-у в гене рецептора допамина, в одном немецком исследовании было установлено, что он связан со снижением эффективности в процессе обучения избежанию ошибок. Согласно одному SNP-у в гене, связанном с метаболизмом инсулина, у меня есть хорошие шансы дожить до 100 лет (то есть, если все ошибки, которые я не научилися избегать, не ухудшат эти шансы) . Есть также целый список снипов, которые в некоторых исследованиях были связаны с улучшением спортивных результатов (спринтерские способности, скорость реакции и так далее) . У меня нет ни одного из этих снипов, что вряд ли вызовет удивление у любого из моих учителей физкультуры.

Вместе с тем, у меня отмечен повышенный, в сравнении со среднестатистическим, риск развития ревматоидного артрита и псориаза (что интересно, потому что мой отец страдал от этого заболевании). У меня несколько сниженный риск развития целиакии, болезни Крона, сахарного диабетом 1 типа и рака предстательной железы. В любом случае, отклонение от нормы малозначительно — менее чем в два раза, — и не достаточно, чтобы заставить меня рассматривать планы по изменению образа жизни.

Но когда я самостоятельно проанализировал свои данные, один полиморфизм вызвал беспокойство. Так, у меня был обнаружен гуанин (G) в cнипе rs1799945 , расположенном в гене, кодирующем белок под названием HFE. HFE является протеином мутирующем при наследственном гемохроматозе. Наследственный гемохроматоз,наиболее распространенная форма болезни связанной с перегрузкой организма железом, является аутосомно -рецессивным генетическим заболеванием, которое вынуждает организм поглощать и хранить слишком много железа. Избыток железа сохраняется во всех органах и тканях организме, в том числе поджелудочной железы, печени и кожи. Без лечения, накопления железа могут повредить органы и ткани. Есть два основных генетических варианта приводящих к этому заболеванию.

Генетический вариант 1 (C282Y/rs1800562) находится в гене HFE. HFE производит мембранный белок, который структурно изморфен I типу белков МНС класса, и ассоциируется с β2 -микроглобулином. Считается, HFE отвечает за абсорбцию железа в клетках кишечника, печени и иммунной системы, регулируя взаимодействие рецептора трансферрина с трансферрином. Замена C282Y нарушает взаимодействие между HFE и его легкой цепью β2 — микроглобулина и предотвращает экспрессию на поверхности клетки. Анализы кристаллической структуры протеина HFE подтверждают то, что было предсказано исходя из изучения его последовательности. Cys282 (остаток 260 в зрелой форме белка) участвует в дисульфиднои мосте подобно аналогично протеинам, которые содержатся в α3 домены I класса MHC . Потеря дисульфида дестабилизирует уникальную нативную пространственную структуру белка. Второй наиболее распространенный вариант гена HFE — это замена гистидина-63 на аспарагиновую кислоту. В кристаллической структуре HFE , His63 (гистидин-41 в последовательности зрелой формы) включен в солянной мост, который в результате мутации разрушается превращаясь в отрицательно заряженный остаток, и тем самым дестабилизируя белок. Таким образом, как и многие другие наследственные заболевания, гемохроматоз является заболеванием вызванным конформацией (нарушением третичной структуры) белка.

В США вариант 1 является наболее распространенным. «Нормальная аллель» Cys282 содержит гуанин в обеих нитях, и встречается примерно у 876 из 1000 человек европейского происхождения. Наиболее распространенные формы наследственных гемохроматозов обнаружены у индивидов гомозиготных по аденина в обеих положениях, это происходит примерно у 4 из 1000 человек европейского происхождения (0,4%) . Тем не менее, пенетрантность является неполной: лишь только от трети до половины гомозигот показывают повышенный уровень железа и, возможно, менее чем у 10% мужчин (и у от 1 до 2% женщин) появятся полные клинические симптомы болезни, которые включают в себя боли в суставах, усталость, боль в животе, нарушение функции печени, и проблемы с сердцем. Как показал Эрнест Беутлер, хотя мутация гемохроматоза и является относительно распространенной, сама болезнь гемохроматоза встречается редко. То есть мутация в гене HFE является необходимым, но не достаточным условием. Задача исследователей гемохроматоза в геномную эпоху, также как и в случае многих заболеваний, состоит в изучении других генетических, эпигенетических и экологических факторов, определяющих, почему только у части гомозигот по C282Y (или H63D) мутациям развивается тяжелое заболевание нарушения обмена железа, в то время как большинство его носителей в значительной степени не имеют даже малейших признаков этого заболевания.

У гетерозиготы в C282Y имеется аденин только в одной цепи и встречается примерно у 120 из 1000 человек европейского происхождения: у гетерозигот практически никогда не возникают клинические симптомы. Гетерозиготы по H63D встречаются гораздо реже, но также маловероятно, что у них появятся клинические симптомы. Как и каждый десятый житель США, я носитель гемохроматоза. Я гетерозигот по H63D .

Теперь, когда я знаю причину, что это дает мне? Не так уж и много, как мне кажется, но я всегда буду помнить о своей гетерозиготности, и если я когда-нибудь у меня появится один из признаков перегрузки железом, я, вероятно, попрошу своего врача, чтобы тот проверил мой уровень железа. Наверное, людям которые заботятся о своем здоровье, такие вещи знать необходимо.

Но если вы зайдете на сайт компании, в которой вы сделали свой ​​анализ, то увидите, что информация, о которой я писал чуть выше, находится не на самом видном месте. Все, что отображается на самом видном месте, связано исключительно с генеалогией. Я беседовал с генеральным директором компании, и она подтвердила, к моему удивлению, что люди, которые используют услуги 23andme гораздо больше заинтересованы в отслеживании своих корней с генетической точки зрения, чем в отчетах, связанных с генетическими факторами здоровья или физического состояния. На сайте можно найти несколько инструментов для подключения себя к другим людями, которые имеют с вами родство с генетической точки зрения. Другими словами, в настоящее время, основное применение полногеномного анализа SNP-ов сводится к созданию своего рода социальной сети генетических генеалогов.

Моя материнская гаплогруппа T2b2 . Гаплогруппа T возникла около 33000 лет назад на Ближнем Востоке, когда современные люди вышли из Восточной Африки. Ее нынешнее географическое распределение сильно зависит от нескольких миграций из Ближнего Востока в Европу, Индию и Восточной Африке примерно 15000 лет назад. T2 в настоящее время широко распространена в Северной Африке и Европе. Семья моей матери совсем недавно приехала из Италии, так что я предполагаю, что эта информация имеет практический смысл. Вы можете обнаружить на сайте сходство с гаплотипами известных людей: например, если ваша материнская гаплогруппа H4a , то вы попадаете в одну компанию с Уорреном Баффетам, одним из самых богатых людей в мире. Вы будете в восторге — и, возможно, не удивитесь — узнав, что единственный известный человек в списке на сайте c той же гаплогруппой, что и я, — это Джесси Джеймс, легендарный бандит с Дикого Запада.

Мой отцовской гаплотип I2. Гаплогруппа I2 является наиболее распространенной в Восточной Европе и на средиземноморском острове Сардиния, где она встречается у 40% мужского населения. Как и ее братская гаплогруппа, I1, I2 мигрировала в составе экспансивных миграций на север в конце ледникового периода около 12 000 лет назад. Но в отличие от I1, которая расширялась от Пиренейского полуострова в северо-западной Европе, градиент I2 направлен с Балкан в сторону юго-запада России в восточной части континента. Эти выводы также логичны, поскольку семья моего отца была родом из казаков. Если бы моя отцовская гаплогруппа была чрезвычайно распространеной С3 , я был бы потомком Чингисханом. Увы, не повезло. Если бы это была гаплогруппа Т, я бы разделял отцовскую линию с великим американским президентом и отцом-основателем, Томаса Джефферсона. Увы, cнова промах. На самом деле, веб-сайт компании не содержит ни одного известного человека с отцовской гаплогруппой I2 (если не считать меня, конечно же) .

Так что теперь, благодаря моему собственному анализу cнипов личного генома, я знаю, что вряд ли будет исключительно успешным в спорте; и что я не голубоглазый лысеющий блондин. Ни одно из этих заключений не представляло для меня какую либо то ни было неожиданность. Впрочем, я также узнал, что не происхожу от Чингисхана. Вот что получилось у меня, и я полагаю, что это лучше чем не знать ничего.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Взаимодействие генов Взаимодействие аллельных генов Взаимодействие неаллельных генов Полное доминирование Неполное доминирование Полимерия Комплементарность Кодоминирование Кооперация Эпистаз Плейотропное действие генов Летальное действие генов Модифицирующее действие генов

3 слайд

Описание слайда:

При полном доминировании доминантный аллель полностью подавляет действие рецессивного аллеля. Расщепление по фенотипу в F2 3:1 Взаимодействие аллельных генов Полное доминирование

4 слайд

Описание слайда:

Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а другой гетерозиготен по этому гену. Какова вероятность рождения детей с этим признаком? Взаимодействие аллельных генов Полное доминирование Задача

5 слайд

Описание слайда:

Оба аллеля – и доминантый, и рецессивный – проявляют своё действие, т.е. доминантный аллель не полностью подавляет действие рецессивного аллеля (промежуточный эффект действия) Расщепление по фенотипу в F2 1:2:1 Взаимодействие аллельных генов Неполное доминирование

6 слайд

Описание слайда:

Взаимодействие аллельных генов Неполное доминирование Задача Определить все генотипы

7 слайд

Описание слайда:

Кодоминирование – совместное участие обеих аллелей в определении признака у гетерозиготной особи При кодоминировании (гетерозиготный организм содержит два разных доминантных аллеля, например А1 и А2 или JA и JB), каждый из доминантных аллелей проявляет свое действие, т.е. участвует в проявлении признака. Расщепление по фенотипу в F2 1:2:1 Взаимодействие аллельных генов Кодоминирование

8 слайд

Описание слайда:

Взаимодействие аллельных генов Кодоминирование Задача Определить возможные группы потомства, если у родителей 2 и 3 группы. Р G F1 JA J0 JB J0 2 группа 3 группа х JA J0 2 группа JA JB 4 группа JB J0 3 группа J0 J0 1 группа Примером кодоминирования служит IV группа крови человека в системе АВО: генотип –JA, JB, фенотип – АВ, т.е. у людей с IV группой крови в эритроцитах синтезируется и антиген А (по программе гена JA), и антиген В (по программе гена JB).

9 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака 1 ген влияет на другой, но не полностью доминирует Расщепление по фенотипу 9:7

10 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Пурпурная окраска цветков душистого горошка определяется одновременным наличием в генотипе доминантных аллелей двух генов А и В, расположенных в разных хромосомах. Поодиночке они не могут обеспечить синтез пигмента красного цвета (антоциана) Если хотя бы один из этих двух генов представлен лишь рецессивными аллелями, цветки бывают белыми. Задача От скрещивания двух чистых линий душистого горошка с белыми цветками получены гибриды с пурпурной окраской цветков. Какое потомство дадут эти гибриды при самоопылении?

11 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Пурпурная окраска цветков душистого горошка определяется одновременным наличием в генотипе доминантных аллелей двух генов А и В, расположенных в разных хромосомах. Поодиночке они не могут обеспечить синтез пигмента красного цвета (антоциана) Если хотя бы один из этих двух генов представлен лишь рецессивными аллелями, цветки бывают белыми. Задача АВ Ав аВ ав АВ Ав аВ ав ААВВ ААВв АаВВ АаВв ААВв ААвв АаВв Аавв ААВВ ААВв ааВВ ааВв АаВв ААвв ааВв аавв Пурпурные цветки – 9 Белые цветки - 7

12 слайд

Описание слайда:

Подавление проявления генов одной аллельной пары генами другой. Гены, подавляющие действие других неаллельных генов, называются супрессорами (подавителями). Эпистаз Взаимодействие неаллельных генов Наследование окраски у плодов тыквы: А - белая, а – полосатая В – желтая, в – зеленая Р: F1: ААВВ – белая, аавв – зеленая АаВв - белая

13 слайд

Описание слайда:

Эпистаз Доминантный Рецессивный Расщепление по фенотипу в F2 13:3 Расщепление по фенотипу в F2 9:3:4 Наследование окраски оперения кур Наследование окраски шерсти домовых мышей

14 слайд

Описание слайда:

15 слайд

Описание слайда:

Явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов, тем ярче проявляется признак (цвет кожи, удойность коров) Взаимодействие неаллельных генов Полимерия Цвет кожи человека определяется генами А1 и А2. Он зависит от числа доминантных генов: А1А1А2А2 – очень темная кожа А1А1А2а2 А1А1а2а2 А1а1а2а2 а1а1а2а2 – светлая кожа

16 слайд

Описание слайда:

Если негритянка (A1A1A2A2) и белый мужчина (a1 a1 a2 a2) имеют детей, то в какой пропорции можно ожидать появление детей – полных негров, мулатов и белых? Обозначение генов: А1, А2 гены определяющие наличие пигмента а1, а2 гены определяющие отсутствие пигмента Взаимодействие неаллельных генов Полимерия Задача

17 слайд

Описание слайда:

Взаимодействие неаллельных генов Кооперация Явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет свое собственное фенотипическое проявление, происходит формирование нового признака Расщепление по фенотипу 15:1

18 слайд

Описание слайда:

Плейотропное действие генов Плеотропия – это влияние одного гена на проявление ряда признаков Например, ген С табака влияет на: Длину черешков листьев Заострения кончиков листьев Наличие острых зубцов на чашечках Продолговатую форму плода И т.д. (всего 6 признаков)

19 слайд

Описание слайда:

Летальное действие генов Рецессивные летальные гены могут вызвать гибель организма еще до полного завершения его развития Например, при генотипах аа формируются следующие признаки: Отсутствие хлорофилла в листьях растений кукурузы Образование внутренних спаек в легких у человека

20 слайд

Описание слайда:

Модифицирующее действие генов От взаимодействия этих генов зависит усиление или ослабление действия других генов Например, степень пятнистости шерсти у собак

Описание слайда:

Допустим, для фермы приобрели двух быков, у которых ген жирности молока точно не известен. Как следует поступить, пользуясь методом гибридизации, чтобы решить, какого из быков эффективнее использовать в качестве производителя? Задача 1 Одна из пород кур отличается укороченными ногами (такие куры не разрывают огородов). Этот признак – доминирующий. Управляющий ими ген вызывает одновременно и укорочение клюва. При этом у полиглотных цыплят клюв так мал, что они не в состоянии пробить яичную скорлупу и гибнут, не вылупившись из яйца. В инкубаторе хозяйства, разводящего только коротконогих кур, получено 3000 цыплят. Сколько среди них коротконогих? От скрещивания серого и белого гомозиготных кроликов родились только серые кролики. Во втором поколении появились черные кролики. Проанализируйте результаты скрещивания и объясните причину появления черных кроликов. С какой особью нужно скрестить гетерозиготную особь свиньи, чтобы в потомстве рецессивный ген скороспелости перевести в гомозиготное состояние? Задача 2 Задача 3 Задача 4

23 слайд

Описание слайда:

Среди лабораторных мышей Эдинбургского университета в результате мутации появились особи с волнистым волосяным покровом. Такие же по фенотипу мыши и тоже как следствие мутации появились потом в лаборатории Гарвардского университета. Исследования показали, что в обеих лабораториях мутантный признак неизменно наследуется как рецессивный. Но когда эдинбургских мутантов скрестили с гарвардскими, все потомство неожиданно оказалось совершенно нормальным, т.е. мутантные гены себя почему-то не проявили. Предложите какую-нибудь вероятную гипотезу, объясняющую такой удивительный факт. Какие надо провести дополнительные опыты, чтобы эту гипотезу проверить или уточнить? Задача 5 Мутации могли породить неодинаковые генотипы, если ими были затронуты различные гены. Но такое возможно, если волнистость волосяного покрова мыши определяется не одним, а хотя бы двумя взаимодействующими генами. Это аналогично изменению окраски цветков душистого горошка: предположим, что нормальные мыши имеют генотип ААВВ, а мутантные в разных городах – генотипы ааВВ и ААВВ. Тогда скрещивание обоих мутантов дает генотип АаВВ, который фенотипически не отличим от генотипа нормальных мышей ААВВ. В соответствии с гипотезой появление мутантов происходило так. В Эдинбурге под влиянием радиации (или иного фактора) в одной из гамет какой-то мыши доминантный ген А превратился в рецессивный ген а. Его появление оставалось незаметным, пока он в результате скрещиваний не распространился в популяции настолько, что однажды оказался у какого-то мышонка в гомозиготном состоянии.Так возникла первая особь с генотипом ааВВ и волнистым покровом. Нечто сходное произошло в Гарварде, только там мутировал не ген А, а ген В и в конце концов возник генотип ААВВ. Для проверки гипотезы стоит скрестить гибриды эдинбургских и гарвардских мутантов (с предполагаемым генотипом АаВв) между собой, ожидая расщепления 9:7, если гены не сцеплены, т.е. находятся не в одной хромосоме. Ответ


Виталий Кушниров

Начнем с простых истин. В природе существование биологических видов сопровождается естественным отбором, то есть гибелью генетически не вполне совершенных индивидуумов. Это позволяет видам совершенствоваться и эволюционировать. Заметим, что без отбора не было бы не только совершенствования, но и самой жизни, ни в каких ее формах. И для того, чтобы мы, такие красивые и умные, могли сидеть сейчас перед компьютером, размышляя о всякой всячине, погибли миллиарды, нет, мириады ближайших родственников наших предков.

Но отбор необходим и просто для поддержания имеющегося уровня генетических качеств. Неточное копирование генетической информации является фундаментальным законом природы, а большинство изменений, возникающих при копировании, неблагоприятны. Отсеять их можно только отбором.

Человек, несомненно, оказался весьма удачным творением природы, намного превзошедшим прочих обитателей биосферы по своим возможностям. Это позволило ему отменить естественный отбор, вследствие чего генетическая эволюция человека практически прекратилась. Развитие человека сосредоточилось в иных областях, в культуре и технологиях. Но генетическая основа человека в отсутствие отбора деградирует, и можно спорить лишь о том, насколько быстро это происходит и как скоро ее качество станет неприемлемо низким. Процесс уже зашел довольно далеко. К настоящему времени большинство людей имеет большие или малые, скрытые или явные генетические дефекты. Полностью здоровых людей очень мало. Например, как говорит статистика, их мало среди армейских призывников, то есть юношей в возрасте их физического расцвета.

Заметим, что часто отбор не просто отсутствует, а он негативен, то есть лучшие люди погибают первыми. В средневековой Европе красивых женщин считали ведьмами и жгли на костре. А ведь красота – не абстрактная эстетическая категория. То, что мы воспринимаем, как красоту, есть набор признаков, говорящих о физическом (и генетическом) благополучии организма. В нашей стране в сталинское время отправляли в лагеря – и на смерть – тех, кто был умен, активен, смог чего-либо добиться. Кулаков, интеллигенцию, военачальников. В наше время наблюдается отрицательная корреляция между умом и плодовитостью: более способные делают карьеру и реже заводят детей. И таких примеров множество.

Надо сказать, что природа все же оставила нам некоторые механизмы генетического очищения. Мутации, нарушающие жизненно важные функции клеточного уровня, отсекаются на стадии половых клеток, которые имеют единичный генетический набор, и потому плохой ген не может быть компенсирован его хорошей копией. Многие мутации, нарушающие работу организма (а не отдельных клеток), отсекаются на эмбриональной стадии, когда младенец не может зачаться или дотянуть до рождения. Но это происходит лишь в крайних случаях – когда сумма генетических ошибок становится несовместимой с жизнью. Человек стал активно вмешиваться в отбор на этих этапах, и это не очень хорошо. Идет борьба за снижение младенческой смертности, и этот показатель давно уже стал критерием оценки качества работы здравоохранения. Развиваются технологии искусственного зачатия для тех, у кого оно не происходит естественным путем. Отношение к этим процедурам, по крайней мере, не должно быть однозначно позитивным. Следует понимать, что таким образом рождаются генетически более слабые дети. При этом почти никто не задумывается, что мы оказываем нашим потомкам медвежью услугу, передавая им нарастающий груз генетических дефектов.

Генетические перспективы человека

Таким образом, очевидно, что генофонд человечества заметно ослаблен и продолжает деградировать. Поскольку вредные мутации возникают в сотни раз чаще, чем полезные, деградация должна идти намного быстрее эволюционного совершенствования. То, что шлифовалось миллион лет, можно растратить за несколько тысяч, или еще быстрее.

Где же выход? Опишу два. То, что можно сделать на нынешнем уровне медицины, и что – в близком будущем.

Решения, доступные сейчас . Родители с ослабленной генетикой, с серьезными наследуемыми заболеваниями должны отказаться от рождения собственных детей. Если болен отец – пусть его дело сделает проверенный здоровый донор. Если мать – процедура сложнее – искусственное оплодотворение с донорской яйцеклеткой.

В общем, рецепты просты, но ими мало кто пользуется. Вероятно, потому, что в обществе отсутствует понимание важности вопроса и доминируют стереотипы значимости генетического родства. Большинство родителей считают, что лучше плохое, но свое. Некоторые другие проблемы на этом пути, опять же, связаны со стереотипами. Например, донор, мать или отец, могут начать претендовать на своего биологического потомка. А ведь их вклад – всего лишь половая клетка, которая при ином раскладе была бы не востребована и погибла. (Напомню, в человеке триллионы клеток). В целом же, пока еще даже рано говорить о возможных проблемах – было бы хорошо, если бы общество хотя бы задумалось и осознало необходимость каких-то действий по улучшению генетики.

Будущее. А вот в будущем, причем довольно близком, нас ожидают весьма интересные возможности. (Во многом ради них и была написана статья). Я бы сказал – произойдет две революции. Первая – мы прочтем всё, что записано в наших хромосомах, и научимся это понимать. Вторая – воспользуемся этим, чтобы исправить все найденные ошибки.

Первая из революций достаточно уверенно просматривается, как следствие развития технологий чтения хромосомной ДНК (секвенирования ). Развития, которое вполне можно назвать революционным по его скорости, по новизне и изяществу возникающих технических решений.

Чтобы не перегружать текст, я выделил описание развития методов секвенирования в . Возможно, не все осилят технические детали, а для кого-то, наоборот, эти детали уже известны. Но прочесть рекомендую, потому что это один из достойнейших эпизодов в творческой истории человечества, настоящий фейерверк изобретений.

Вкратце, та статья о следующем. До недавнего времени технологии секвенирования были относительно малопроизводительны, и более подходили для анализа отдельных генов, чем геномов . (Один ген содержит 1 – 5 тыс. нуклеотидов, геном человека, все содержимое его двойного набора хромосом – 2 х 3 миллиарда нукл.) Но в последнее десятилетие наметился радикальный прогресс. Были разработаны методы и приборы, позволяющие готовить одновременно и «в одной пробирке» миллионы образцов ДНК, а затем одновременно же их анализировать. Каждый такой образец – это локализованная колония одинаковых молекул ДНК. Нуклеотидные последовательности в этих приборах считываются с помощью фотокамеры, в виде миллионов флуоресцентных или люминесцентных мерцающих световых точек – сигналов, поступающих от колоний. Все это позволило повысить скорость секвенирования в тысячи, а то и в миллионы раз, и определять миллиарды нуклеотидов в день. И уже появляются приборы следующего поколения, способные читать единичные молекулы ДНК. Стоимость геномного секвенирования падает фантастически быстро, почти троекратно каждый год. Это позволяет рассчитывать, что в недалеком будущем, лет через 10, каждый сможет прочесть свой геном за вполне скромные деньги, за 1000 долларов или еще дешевле.

Осмысление генома

В результате такого развития секвенирования лет примерно через 20, или еще быстрее, будут определены миллионы человеческих геномов. Это позволит, посредством статистического анализа, определить, какие варианты генов (или их сочетания) отвечают за те или иные наши особенности, недостатки и склонность к разным болезням. Как говорят генетики, установить соответствие между генотипом и фенотипом (набором наблюдаемых признаков).

Геном человека содержит от 20 до 25 тысяч генов , кодирующих белки или функциональные РНК. У разных людей каждый ген может иметь десятки вариантов, называемых аллелями. Большинство из них вполне хороши, но некоторые, и таких тоже немало, содержат мутации, ухудшающие работу генного продукта, белка или РНК. Вариантные отличия могут относиться как к кодирующей области гена, так и к регуляторной промоторной области, определяющей, когда, где и в каком количестве должен синтезироваться продукт данного гена. Например, несвоевременное включение генов, определяющих развитие организма, может приводить к дефектам его строения, т.е. уродствам.

Несмотря на то, что молекулярные функции большей части генов известны, оценить «качество» гена теоретически, т.е. исходя из его последовательности, можно лишь приблизительно и в самых простых случаях, когда имеется явный дефект какой-либо функции организма, и виден дефект соответствующего гена. Трудность предсказаний связана, в частности, с тем, что многие гены определяют (или влияют на) более чем одну функцию, а многие признаки определяются более чем одним геном.

Поэтому эффективной альтернативой представляется эмпирический подход: статистика. Сопоставление большого количества геномов и соответствующих им фенотипических характеристик позволит достоверно определить, какие аллели являются «плохими», и какие недостатки определяют. Это знание позволит интерпретировать индивидуальные геномы, определять, какие плохие аллели (или их комбинации) есть у каждого в геноме. Это могут быть гены, определяющие склонность к болезням, тяжелым, как рак или диабет, или более легким. Можно ожидать и еще много интересного. Например, какие гены определяют агрессивность или мягкость характера, эгоизм и альтруизм, склонность к пьянству и многое другое.

Отмечу два технических обстоятельства. Первое, что наличие у нас двойного генетического набора позволяет замаскировать большинство бракованных аллелей, но эти аллели могут проявиться в следующих поколениях. Второе, что бо льшая часть человеческого генома (до 98%) ничего не кодирует , и, вероятно, не играет какой-либо роли. Сравнение геномов поможет прояснить этот вопрос, и, если роли нет, задача сравнения станет менее объемной.

Персональная медицина и другие последствия

Первое из существенных применений знания индивидуального генома – персональная медицина. Зная индивидуальные генетические слабости, будет возможно отодвигать появление наследственных болезней, или даже предотвращать их. Если предполагается высокая вероятность возникновения, например, диабета или болезни Альцгеймера, вам пропишут определенные лекарства и диету, при которых эта болезнь разовьется гораздо позже или не возникнет вовсе. Другие лекарства тоже будут назначать с учетом ваших генных особенностей и предрасположенностей. Знание генетических наклонностей поможет воспитывать детей и выбирать им профессию.

Кстати, многие дефектные варианты генов уже известны, а их выявление, производимое более простым способом, уже доступно и стоит недорого. В этом методе вариантные особенности генов (одно-нуклеотидные замены, SNP) выявляют посредством гибридизации ДНК человека со специально подобранными ДНК-праймерами. Такие праймеры, в количестве до миллиона наименований, закреплены на ДНК-чипе. Сигнал усиливают при помощи полимеразной цепной реакции (ПЦР ) с флуоресцентными праймерами, происходящей прямо на чипе, и затем фиксируют фотокамерой. Один из пионеров направления, компания 23andMe (Вики ), берет за такой анализ от 200 до 400 долларов. При этом выявляется предрасположенность к 100 тяжелым наследственным заболеваниям, таким, как Альцгеймер или диабет. В качестве бесплатного приложения – выявление родства , даже дальнего. Для тестирования не надо сдавать кровь, достаточно плюнуть в специальную пробирку. В 2008 году журнал Time назвал сервис ДНК-тестирования 23andMe «изобретением года». Компания полагает , что в перспективе она будет выполнять такой анализ на основе геномного секвенирования. Любопытно, что возглавляет компанию жена основателя Google Сергея Брина. (Он – король двоичного кода, она – четверичного).

Вероятно, поначалу наличие генетической информации может вызывать различные моральные проблемы в обществе, если она станет публичной. И это естественно – ведь по сути это более интимная информация, чем, скажем, фотография «ню». Знание ваших генетических недостатков, генетической склонности к болезням, к агрессии или эгоизму может затруднить устройство на работу или получение страховки. Обладателей геномов с асоциальными наклонностями, возможно, станут избегать. А может, наоборот, наличие генов агрессии станет смягчающим обстоятельством в суде? По логике нынешнего судопроизводства это вполне возможно. Окажется, что Чикатило не виноват, просто у него гены такие. Но я все же думаю, что все подобные проблемы решаемы.

Кстати, деятельность 23andMe разрешена законом лишь в половине штатов США, поскольку компания отправляет результаты тестирования пациенту, а не доктору, как принято.

Рафинирование генома

И вот мы знаем, какие из наших генов плохи. Что делать дальше? Здесь возможны решения различного уровня сложности. Самое простое – проверять геном человеческих эмбрионов на ранних стадиях развития, и прерывать беременность в случае плохого прогноза (но какой прогноз считать достаточно плохим?). Морально более приемлемым способом было бы проведение всех манипуляций до внедрения эмбриона в матку. Такой подход во многом напоминал бы современную технологию экстракорпорального оплодотворения (ЭКО). Описанные методы способны предотвратить самое тяжелое – рождение детей с явными физическими недостатками. И это уже большое достижение.

Но предположим, мы хотим избавиться от плохих генов – раз и навсегда. Чтобы наши потомки были здоровыми, красивыми и умными. Удивительно, но не все признают важность этой задачи. Мне приходилось встречать и такие мнения: Если мелкий дефект – не беда. Уже придумали или придумают от этого какую-нибудь таблетку. Даже если более серьезные дефекты – не проблема. Многие гении родились с дефектами. Эйнштейн и Ньютон были аутистами, Гете родился недоношенным и больным. А Стивен Хокинг и вовсе большинство своих трудов написал в инвалидной коляске. Так что пусть все будет, как есть.

Максим Каммерер - человек будущего. Улучшенная генетика налицо. (Обитаемый остров, братья Стругацкие, фильм - Ф. Бондарчук)

По-моему, это благодушие и благоглупость. Мне ближе позиция неполиткорректного Джеймса Уотсона: «Некоторые говорят, что если мы сделаем всех девушек красавицами, это будет ужасно. Я думаю, это было бы великолепно». Полагаю, что улучшение генетики человека – цель исключительно важная и благородная. В результате, мы будем редко бывать у доктора и долго жить, у нас всегда будет хорошее самочувствие, настроение и высокая работоспособность. Мне кажется даже, что генетическая предпосылка таланта, вплоть до гениальности, проста: отсутствие генетических отягощений, особенно связанных с работой мозга. Чтобы мысли летали, а не ползали. Остальное – детали воспитания и образования.

Помимо улучшения здоровья, есть и другая важная сторона. Скорее всего, через гены можно будет определять и характер будущего человека. Будет ли он добрым или агрессивным, эгоистом или альтруистом. Из добрых альтруистов можно создать идеальное общество, в котором будет мало внутренних противоречий и борьбы, которое будет справедливо, эффективно и комфортно для жизни. То есть, можно создать не только здорового человека, но и здоровое общество.

Чтобы этого добиться, необходимо заменить некачественные гены на их хорошие варианты. А плохих генов у каждого найдутся десятки, если не сотни (в зависимости от строгости подхода). Изменение генов у человека возможно уже сейчас, но технология весьма далека от совершенства и для нашей задачи потребуются ее принципиальные улучшения.

Во-первых, есть проблемы с адресностью доставки. Сейчас в большинстве случаев просто забрасывают в клетку хороший ген, безадресно. А нам надо попасть в нужное место хромосомы и заместить там «плохой» ген. Порядок генов в хромосоме должен быть сохранен, поскольку иначе гены будут теряться в следующих поколениях в результате кроссинговера (+англ .). (Это процесс, предшествующий образованию половых клеток, при котором родительские хромосомы обмениваются гомологичными участками, т.е. одинаково расположенными и несущими сходные гены. Так природа тасует генетические «карты» перед каждой «игрой» – новой жизнью.)

Направить ген в нужное место хромосомы принципиально возможно. Например, для клеток простейших эукариот, дрожжей, такая задача давно решена, и сейчас с ней справится любой студент. При этом большую часть работы выполняет дрожжевая система рекомбинации ДНК. На практике, вы вводите в клетку фрагмент ДНК, концевые участки которой идентичны какому-то месту на хромосоме, а середина может отличаться. ДНК сама находит комплементарное место на хромосоме, а клеточные механизмы вставляют ее вместо похожей старой. Но в клетках человека такой механизм работает плохо, ДНК попадает преимущественно в случайные места. В частности, потому, что его геном в 500 раз больше. Чтобы обеспечить адресность такого механизма в клетках животных, ему в помощь используют специально разработанные ферменты, нуклеазы, способные распознать любую произвольно заданную последовательность ДНК (1 , 2 ).

В целом, процедура замены одного гена пока довольно сложна и трудоемка, а случаи замены многих генов мне неизвестны. Для практического использования процедуру замены придется существенно усовершенствовать и упростить. Впрочем, этому не видно принципиальных препятствий, и разработка такой технологии едва ли займет более 50 лет.

Но, вероятно, главной проблемой будет не создание технологии рафинирования генома, а ее принятие обществом, которое, конечно же, сочтет ее нарушением морали, этики или еще чего-нибудь. Почему? – да как бы чего не вышло. Сейчас изменение генома человека запрещено, например, Конвенцией о биомедицине и правах человека 2005 года (статья 13, текст довольно безграмотный). Показательна эволюция отношения к евгенике , учению об улучшении наследственных свойств человека (т.е. к теме данной статьи). Оно было в целом благоприятным, от древних греков и до середины 20 века. Но затем евгеника приглянулась нацистам, и теперь ее часто ассоциируют с их бесчеловечными идеями. Однако эпизод с нацистами это, скорее, лишь повод для неприятия евгеники. А причина в подсознательном страхе перед прогрессом, основанном на невежестве и предположении, что любое изобретение будет, прежде всего, использовано во вред. Границы страха и невежества иллюстрирует история с ГМО : большинство населения убеждено, что даже овощи нельзя модифицировать. Хотел бы ошибиться, но надежды мало, что человечество станет существенно умнее через 50 лет.

Но идея все равно пробьет себе дорогу. Генетически улучшенные люди появятся, несмотря на запрет, и все увидят, что они хороши. Им будут завидовать, хотя и подсознательно бояться их. Но зависть возьмет верх, и все большее число людей захотят иметь таких детей. Затем найдутся страны, которые разрешат улучшение генома. Дольше всех будут держаться фундаментально-религиозные общества. В результате, они сильно отстанут в своем развитии. И слава Богу, должна же быть какая-то плата за ретроградство.

Тема генетического рафинирования неоднократно встречалась в фантастике (как правило, в негативном ключе). Например, в фильме Гаттака (1997). А вот обоснованных прогнозов мне встречать не случалось. Между тем, приводимый мною сценарий просматривается достаточно уверенно, и будет удивительно, если он не сбудется. Просто потому, что у человечества нет другого пути.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал