Физико-химические свойства белков. Функции белков в организме

Главная / Освещение

Пищевой белок: Как определить недостаток белка?

Красота напрямую зависит от здоровья, и многие познания о влиянии тех или иных веществ на наш внешний вид мы впитали еще из детства. Так для ногтей, например, важен не только кальций, но и белок. Поэтому если вы хотите, чтобы ваш маникюр вызывал исключительно восхищение, стоит задуматься о том, нет ли недостатка белка в вашем рационе. Также от того, сколько пищевого белка в вашей тарелке, будет зависеть и состояние ваших волос, поэтому, пожалуй, стоит отнестись к вопросу серьезно.

Недостаток белка в организме

Белки являются одними из самых необходимых веществ в организме человека. Если о дефиците витаминов и минералов мы вспоминаем практически каждую весну, списывая хандру и усталость на «авитаминоз», то о том, что многие проблемы здоровья могут быть связаны с дефицитом качественного белка, мы задумываемся мало.

Многие говорят о том, что белок - это тяжелый продукт, и есть его надо ограниченно. А некоторые и вовсе его не едят - и вроде ничего плохого не происходит. Однако белок в организме выполняет жизненно важные функции, взять на себя которые не сможет ни один другой элемент. Для чего служит белок в организме человека?

Зачем нужны белки?

Белок является основой для строительства тела. Из белков состоят мышцы, ткани, внутренние органы, кровяные клетки, иммунные тела, а также волосы, ногти и клетки и белки кожи.

Пищевые белки в организме в кишечнике разбираются до «кирпичиков» аминокислот. Аминокислоты отправляются в печень для построения и синтеза собственных белков тела, но в организме есть часть аминокислот, которые тело может произвести само, а часть должны только поступать извне. Это незаменимые кислоты, но содержат их только животные белки, в растительных белках набор аминокислот беднее, поэтому они не считаются полноценными.

Еще одной важной функцией белка является его ферментная и обменная функция. Большая часть ферментов и гормонов - это чистый белок или соединение белка с другими веществами (ионами металлов, жирами, витаминами). При нехватке белков могут страдать некоторые виды обмена, особенно это заметно при ограничительных низкобелковых диетах.

Кроме того, белки выполняют транспортную функцию, то есть они переносят в клетки и из клеток важные вещества - ионы, питательные и другие вещества. Белки защищают наш организм от инфекций, так как антитела и защитные белки слизистых - это белковые молекулы.

Белки поддерживают нашу молодость и красоту - и это происходит благодаря своевременному обновлению молекул коллагена и эластина, которые не дают обезвоживаться, стареть нашей коже, препятствуют образованию морщинок.

Как определить у себя дефицит белка?

1. Посмотрите на себя в зеркало. Если у вас дряблые мышцы, отвисшая кожа, на лице есть морщинки, а вам еще нет тридцати - проблемы с белковым обменом у вас точно есть. Если вы активно тренируетесь, при этом практически не потребляете белков, соблюдая пост или низкобелковые диеты - у вас также есть проблемы с белковым обменом. Вам следует пересмотреть свое питание, если ваш вес более чем на 25% выше нормы, а если есть ожирение - и подавно. При недостатке белка обмен веществ замедляется, что снижает активность ферментов и гормонов, а это в итоге приводит к потере мышечной массы и набору вместо нее жировой.

2. Рассмотрите свои кожу, ногти и волосы, каково их состояние? Они практически полностью имеют белковое происхождение, и при его недостатке серьезно страдают. Если организм живет в условиях хронического дефицита белка, появляется дряблость и бледность кожи, ее дефекты, хрупкие волосы, слоящиеся и плохо отрастающие ногти.

3. Проблемы иммунитета - частые простуды, аллергии, дерматиты и гнойничковые высыпания. В основном они тоже связаны с дефицитом белков, иммунные клетки и антитела просто не из чего строить.

4. Могут быть расстройства пищеварения, запоры, общее недомогание, быстрая утомляемость, низкая устойчивость к стрессам.

Как пополнить запасы белка

Для того чтобы избежать проблем с белковым голоданием и нарушений, связанных с нехваткой белка в организме, необходимо провести ряд превентивных мер, прежде всего, касающихся питания и образа жизни.

1. Критически пересмотрите свое питание

Вам может казаться, что вы едите много мясного, но по факту эти продукты содержат очень мало качественного пищевого белка (а то и не содержат вовсе). Относительно причисляются к мясу и мясным продуктам такие традиционные продукты нашего стола как:

Вареные или копченые колбасы, сардельки и сосиски, даже сделанные по ГОСТу. Белка в них критически мало для полноценного обеспечения организма.

Полуфабрикаты с «мясом», магазинные котлеты, пельмени. Роль мяса там играют соевые белки и ароматизаторы.

Копченые окорока, рульки, рулеты и т.д. Мясо там проходит термические или маринадные обработки, качество его также страдает. Неизвестно также, где, как и из какого мяса это готовили, соблюдались ли элементарные санитарные нормы.

В качестве разнообразия изредка можно полакомиться этими продуктами, но использовать их часто не стоит - тем более как источник белка!

2. Выбирайте постные сорта мяса и нежирную рыбу

Жиры мешают полноценному усвоению белка. Самыми жирными являются семга, сом, гусь и утка, печень трески, свинина и говяжья грудинка. Самыми лучшими источниками белка являются курица без кожи, говядина, кролик, индейка, яйца, хотя растительным белком в виде бобовых, орехов и гречневой крупы также следует разнообразить свой рацион.

При этом самыми полезными способами приготовления мяса являются запекание в фольге, гриль, шашлык, приготовление на пару, тушение. Жарка мяса - самый вредный способ приготовления.

3. Ешьте белок отдельно

Белковую пищу следует есть отдельно от картофеля, крупы и без хлеба, так они усваиваются плохо. Лучше комбинировать мясо с овощами - свежими или тушеными, они помогут усвоить белок. Употребляйте белковую пищу до 6 вечера, так как переваривание ее в ночное время затруднено.

При этом не стоит перегружать организм белком, так как избыток белка приводит к процессам гниения в кишечнике и интоксикации продуктами метаболизма, запорам и чувству тяжести в животе.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

методы Определения БЕЛКОВ

в пищевых продуктах

Методические указания

по курсу «Технология пищевых производств»

для студентов специальности 260601.65

Одобрено

редакционно-издательским советом

Саратовс кого государственного технического университета

Саратов 2009

Цель работы : изучение методов определения белковых веществ в пищевых продуктах.

ОСНОВНЫЕ ПОНЯТИЯ

Белками или белковыми веществами называются сложные высокомолекулярные полимеры, молекулы которых построены из остатков аминокислот.

Аминокислота – это гетерофункциональное соединение. Простейшая формула аминокислоты: R-CH-COOH-NH2-. - NH2 – аминогруппа, обладает основными свойства белков; - COOH – карбоксильная группа – обладает кислотными свойствами; R – радикал, влияет на пространственную конфигурацию молекул белка. Остатки аминокислот в молекуле белка соединяются при помощи полипептидной связи – CO-NH-. Белки наиболее важные и сложные по химической структуре среди веществ, входящих в пищевые продукты. Полипептидные цепи белков строятся из десятков и сотен молекул, причем не одной, а разных аминокислот, образуя цепь они могут соединяться в различной последовательности, что приводит к огромному многообразию комбинаций аминокислотных остатков в полипептидных цепях.

Состав белков: содержание углерода – 50-55%; водорода – 6,5-7,3%; кислорода – 21,5-23,5%; азота – 15-18%. Также в состав белков входит селен, фосфор.

Классификация белков:

1) в зависимости от формы молекулы белка: глобулярные и фибриллярные;

2) по строению: простые (протеины) – при гидролизе распадаются до аминокислот и сложные (протеиды) – при гидролизе распадаются на аминокислоты и простетическую группу;

3) по растворимости: растворимые и не растворимые в солевых растворах;

4) по выполняемым функциям: белки выполняют каталитические функции (ферменты); регуляторные (гормоны); структурные (коллаген); двигательные; транспортные (гемоглобин); защитная (иммуноглобулин).

Их основное зна­чение заключается в незаменимости другими компонентами пи­щи. Белки составляют основу процессов жизнедеятельности орга­низма. Необходимость их постоянного обновления лежит в осно­ве обмена веществ.

Белки в организме выполняют структурную (построение тка­ней и клеточных компонентов) и функциональную (ферменты, гормоны, дыхательные пигменты и др.) роль.

Дефицит белка в пищевом рационе повышает восприимчи­вость организма к инфекционным заболеваниям, нарушает про­цессы «кроветворения», обмен липидов, витаминов и др. У детей при белковой недостаточности замедляются рост и умственное развитие.

Длительный избыток белка в питании также отрицательно сказывается на жизнедеятельности организма, вызывая перевозбудимость нервной системы, нарушение обменных процессов, пе­регрузку печени и почек.

В ежедневном рационе взрослого человека белки должны со­ставлять около 14% общей калорийности, сочетаясь в определен­ном соотношении с другими пищевыми веществами.

Известно, что растительные белки усваиваются организмом не полностью по сравнению с животными. Так, белки молока и яиц усваиваются на 96%, белки рыбы и мяса – на 95%, белки хлеба из муки пшеничной I и II сортов - на 85%, белки карто­феля, хлеба из обойной муки, бобовых - на 70%. Учитывая, что растительные белки менее полноценны по составу незаменимых аминокислот, чем животные, потребление определенного количе­ства животных белков совершенно необходимо. Для взрослого человека доля животных белков в среднем должна составлять около 55% общего количества белка в рационе.

Технологические свойства белков.

1. Белки – амфотерные соединения. При определенном значении ph=4,6-4,7 (изоэлектрическая точка белка) число положительных и отрицательных зарядов одинаково. Белки в данной точке электронейтральны, а их растворимость и вязкость наименьшая. Эту способность белка снижать растворимость при достижении электронейтральности широко используют в пищевой промышленности , например при производстве сыра и творога.

2. Гидратация белков. Белки присоединяют воду, то есть проявляют гидрофильные свойства, при этом они набухают, увеличивается их масса и объем, причем набухание может сопровождаться частичным растворением белков. На поверхности молекулы белка содержаться группы: карбоксинальная, аминная, пептидная, эти группы притягивают к себе молекулы воды и образуют защитную гидратную оболочку. В результате молекулы белков не могут соединяться друг с другом, то есть агрегироваться. В изоэлектрической точке данная оболочка разрушается, молекулы белков соединяются друг с другом, а эти агрегаты могут выпадать в осадок. При изменение среды макромолекулы белков становятся заряженными, их способность присоединять воду меняется, при ограниченном набухании белковые растворы образуют сложные смеси, называемые студнями. Набухший в воде белок пшеничной муки образует клейковину. Студни и клейковина обладают свойствами упругости и эластичности, пластичности и ползучести, т. е. свойствами твердого и жидкого тела. Свойство набухания играет большую роль в пищевой технологии (набухание зерна при замочке, муки при замесе теста).

3. Денатурация – это изменение пространственной ориентации белковой молекулы, не сопровождающееся разрывом ковалентных связей. Денатурация может вызываться повышением температуры, механическим и химическим воздействием, ультразвуком, ионизирующим облучением и другими факторами. При этом процессе изменяются физические свойства белка: уменьшается способность к гидратации, снижается растворимость, теряется его биологическая активность, меняется форма макромолекулы. Денатурация белков играет важную роль в технологических процессах, связанных с образованием структурных систем полуфабрикатов и готовых продуктов (хлеба, макаронных, кондитерских и других изделий).

4. Гидролиз белков. Протекает под действием ферментов ступенчато с образование промежуточных продуктов: пептонов, полипептидов, дипептидов, аминокислот. Процесс присоединения группы – OH - к карбоксильной группе.

5. Пенообразование – способность белков образовывать эмульсии в системе жидкость-газ, называемые пенами. Белки как пенообразователи широко используются при изготовлении многих кондитерских изделий.

6. Меланоидинообразование – это свойство объясняется взаимодействием аминогруппы белка с карбонильными группами сахаров. Эта реакция сопровождается образованием меланоидинов, то есть веществ, обладающих различным окрашиванием и ароматом.

Массовую долю белка в пищевых продуктах определяют по количеству общего азота методом Кьельдаля. С развитием фото - и спектрофотометрии были разработаны методы количественного определения белка, основанные на его способности давать окра­шенные соединения с некоторыми реагентами. Среди них следует отметить метод Лоури, биуретовый метод. Находят применение также физико-химические методы, в основу которых положены специфические свойства белка: образование различной степени помутнения в зависимости от концентрации белка в растворе сульфосалициловой кислоты (нефелометрический метод), способ­ность белка адсорбировать некоторые красители и другие свойства белка.

Все перечисленные методы могут быть отнесены к ускорен­ным. При относительно небольших затратах времени они харак­теризуются достаточно высокой точностью и простотой определе­ния. В настоящих методических указаниях изложены методы количест­венного определения белка: Кьельдаля, биуретовый, нефелометрический, рефрактометрический и метод формольного титрования.

МЕТОДЫ ОПРЕДЕЛЕНИЯ

Определение массовой доли белка методом Кьельдаля

Метод основан на минерализации навески продукта при нагревании с концентрированной серной кислотой в присутствии катализато­ров. При этом углерод и водород органических соединений окис­ляются до диоксида углерода и воды, азот, освобождаемый в ви­де аммиака , соединяется в колбе с серной кислотой, образуя сульфат аммония . Схематично происходящие реакции могут быть представлены следующим образом:

RCHNH2COOH +H2SO4 = СО2+ SO2 + H2O + NH3.

2NH3+ H2SO4-(NH4)2SO4.

На последующей стадии дистилляции раствор сульфата ам­мония обрабатывают концентрированным раствором гидроксида натрия, при этом аммиак освобождается и улавливается титро­ванным раствором серной кислоты. Избыток серной кислоты оттитровывают раствором гидроксида натрия. Метод Кьельдаля применяют в нескольких модификациях, отличающихся в основ­ном условиями минерализации. Для ускорения процесса вводят различные катализаторы: оксид меди, селен, свинец и другие, повышают температуру кипения серной кислоты добавлением со­лей, сульфата калия или натрия, сочетают добавление катализа­тора и солей при сжигании навески.

Методом Кьельдаля в любой модификации определяется ко­личество общего азота. Массовая доля белка вычисляется умно­жением полученной величины общего азота на переводной коэф­фициент 6,25, исходя из того, что в белках в среднем содержится 16% азота. Условность полученных результатов при таком пере­счете очевидна, так как не весь азот пищевого продукта находит­ся в форме белка и, кроме того, процентное содержание азота в белках подвержено колебаниям как в сторону повышения, так и в сторону понижения от 16%. В некоторых продуктах азотистые вещества небелкового характера достигают значительных коли­честв (мышечная ткань рыбы – 15%, мясо животных – 10–16% от общего количества азотистых веществ).

Следовательно, для получения более точных результатов не­обходимо либо при пересчете общего азота на белок использо­вать различные коэффициенты в зависимости от процентного со­держания азота в белках отдельных продуктов: мясо и овощи – 6,25; пшеница, рожь, горох и др. – 5,7; гречиха, рис – 6,0; моло­ко – 6,37 и т. д., либо белковый азот определять отдельно специ­альными методами.

Техника определения

В колбу Кьельдаля помещают последовательно несколько стеклянных бусинок или кусочков фарфора, около 10 г серно-кислого калия, 0,04 г серно-кислой меди. В бюксу с крышкой отмеривают 5 см3 молока, крышку закрывают и взвешивают. Молоко из бюксы переливают в колбу. Пустую бюксу вновь взвешивают и по разнице между массой бюксы с молоком и массой пустой бюксы устанавли­вают массу взятого молока. В колбу добавляют 20 см3 серной кислоты, вливая осторожно по стенкам колбы, смывая с них капли моло­ка. Колбу закрывают грушеобразной стеклянной пробкой и осторожно круговыми движениями перемешивают содержимое колбы.

Колбу ставят на нагревательный прибор в наклонном положении под углом 45° и осторожно нагревают.

Продолжают нагревание колбы до тех пор, пока не прекратится пенообразование и содержимое колбы не станет жидким.

Затем сжигание продолжают при более интенсивном нагрева­нии. Степень нагревания считают достаточной, когда кипящая кис­лота конденсируется в середине горловины колбы Кьельдаля.

Время от времени содержимое колбы перемешивают, смывая обуглившиеся частицы со стенок колбы. Нагревание продолжают до тех пор, пока жидкость не станет совершенно прозрачной и прак­тически бесцветной (при применении в качестве катализатора оки­си ртути) или слегка голубоватой (при применении и качестве катализатора серно-кислой меди).

После осветления раствора нагревание продолжают в течение 1,5 ч, после чего колбе дают остыть до комнатной температуры. Добавляют

150 см3 дистиллированной воды и несколько кусочков свежепрокаленной пемзы, перемешивают и снова охлаждают.

В коническую колбу отмеривают 50 см3 раствора борной кисло­ты, добавляют 4 капли индикатора и перемешивают. Коническую колбу соединяют с холодильником с помощью аллонжа и резино­вой пробки так, чтобы конец аллонжа был ниже поверхности раствора борной кислоты в конической колбе. Колбу Кьельдаля соеди­няют с холодильником при помощи каплеуловителя, проходящего через одну пробку с делительной воронкой. Градуированным ци­линдром отмеривают 80 см3 раствора гидроокиси натрия (при при­менении в качестве катализатора красной окиси ртути используют раствор гидроокиси натрия, содержащий сульфид натрия) и через делительную (или капельную) воронку вносят его в колбу Кьельдаля. Сразу же после выливания раствора закрывают кран делительной воронки для избежания потери образующегося аммиака.

Содержимое колбы Кьельдаля осторожно смешивают круговы­ми движениями и нагревают до кипения. При этом необходимо избегать пенообразования.

Продолжают перегонку до тех пор, пока жидкость не начнет вскипать толчками. При этом регулируют степень нагрева так, чтобы время дистилляции было не менее 20 мин. Убедиться в полноте перегонки аммиака можно путем дополнительной перегонки в новую порцию борной кислоты (20 см3) в течение 5 мин. Окраска раствора борной кислоты должна оставаться без изменения. При перегонке не допускают нагревание раствора борной кислоты в конической колбе. Слишком сильное охлаждение (ниже +10 °С) также нежелательно, так как оно может вызвать переброс жидкости из конической колбы в колбу Кьельдаля.

Перед окончанием перегонки опускают коническую колбу так, чтобы конец аллонжа оказался над поверхностью раствора борной кислоты, и продолжают перегонку в течение 1-2 мин.

Прекращают нагревание и отсоединяют аллонж. В коническую колбу смывают внешнюю и внутреннюю поверхности аллонжа не­большим количеством дистиллированной воды.

Титруют дистиллят раствором соляной кислоты до перехода зе­леного цвета в серый. При избытке титранта раствор приобретает фиолетовый цвет.

Параллельно проводят контрольный анализ так же, как и основ­ной, применяя 5 см3 дистиллированной воды вместо молока. Коли­чество повторностей контрольного анализа должно быть не ме­нее 5. Контрольный анализ проводится в каждой серии определе­ний количества белка и при каждой замене реактивов.

Проведение ускоренного анализа

В кварцевую пробирку помещают компоненты, указанные в пер­вом абзаце. Осторожно круговыми движениями перемешивают содержимое пробирки. Затем вносят в пробирку 20 см3 перекиси водорода, не допуская вспенивания.

Пробирку ставят в гнездо алюминиевого блока, помещенного на электроплитку. Устанавливают регулятор нагрева плитки в среднее положение. После прекращения вспенивания содержимого пробирки устанавливают регулятор нагрева плитки в положение, соответству­ющее максимуму. Нагревание продолжают до тех пор, пока жид­кость не станет прозрачной и бесцветной или слегка голубоватой. Затем пробирку охлаждают и присоединяют к перегонному аппара­ту (рис. 1).

https://pandia.ru/text/78/317/images/image002_143.gif" width="168" height="43 src=">,

где 1,4 – количество азота, эквивалентное 1 см3 раствора соляной кислоты с молярной концентрацией с (HCl)=0,1 моль/дм3, мг/см3; N – коэффициент, численно равный величине молярной концентрации раствора соляной кислоты, выраженный мг/см3; V1 – объем раствора соляной кислоты, израсходованный на титрование дистиллята в основном анализе, см3;

V0 – объем раствора соляной кислоты, израсходованный на титрование дистиллята в контрольном анализе, см3; 6,38 – коэффициент пересчета массовой доли общего азота на массовую долю общего белка; m – масса молока, взятая на анализ, г.

За окончательный результат испытания при анализе по Кьельдалю принимают среднее арифметическое результатов двух параллельных определений, допускаемое расхождение между которыми не должно превышать 0,03%.

Определение массовой доли белка биуретовым методом

Спе­цифической реакцией на содержание белка является биуретовая реакция, так как ее дают полипептидные связи. Она получила свое название от производного мочевины - биурета, который об­разует в щелочном растворе медного купороса окрашенное комп­лексное соединение. Интенсивность окрашивания пропорциональ­на содержанию пептидных связей, а, следовательно, и концент­рации белка в растворе.

Биуретовую реакцию дают все белки, пептоны и полипепти­ды, начиная с тетрапептидов.

Эта реакция длительное время использовалась как качественная реакция на белок. В дальнейшем она стала применяться для количественного определения белка в различных объектах. Биуретовый метод применяют в различных модификациях, раз­личающихся условиями экстрагирования белка, способами вне­сения биуретового реактива и техникой колориметрирования.

Ниже приводится биуретовый метод определения массовой доли белка в муке в модификации Дженнингса, экспериментальная проверка которого выяви­ла ряд его преимуществ перед другими модификациями.

Биуретовый реактив – 15 см3 10 н. раствора КОН и 25 г сегнетовой соли, взятой с погрешностью ±0,01 г, растворяют примерно в 900 см3 дистиллирован­ной воды в мерной колбе вме­стимостью 1000 см3. Медленно добавляют при постоянном перемешивании 30 см3 4 %-ного раствора CuSO4, отмерен­ных цилиндром, и доводят объем колбы до метки дистил­лированной водой.

Техника определения

Взвешивают около 1,5 г муки с погрешностью ±0,001 г и помещают в сухую коническую колбу вместимостью 250-300 см3, снабженную пробкой. Отмеривают цилиндром с ценой деления 0,1 см3 под тягой 2 см3 четыреххлористого углерода для извлечения жира из образца, добавляют пи­петкой 100 см3 биуретового реактива. Закрытую пробкой колбу встряхивают на механическом встряхивателе в течение 60 мин. Далее вытяжку центрифугируют в течение 10 мин при частоте вращения

4500 мин-1. Прозрачный центрифугат помещают в кю­веты фотоэлектроколориметра с толщиной слоя раствора 5 мм. Измерение оптической плотности производят при длине волны 550 нм.

По величине оптической плотности белковой вытяжки опреде­ляют содержание белка в навеске (мг) с помощью калибровоч­ной кривой

(рис. 2). Рассчитывают массовую долю белка (в %) на сухие вещест­ва муки.

Запись в лабораторном журнале

Масса муки (m)……………………………………..г

Величина оптической плотности (D )

(по калибровочной кривой)(n/1000)………………г

Массовая доля белка в муке (M 1 )………………….. %

Массовая доля белка в 100 г сухих веществ(М)…%

Заключение

Построение калибровочной кривой – для по­строения калибровочной кривой подбирают образцы муки с раз­личной массовой долей белка в диапазоне, встречающемся в реальных условиях (от 8 до 20%). Интервал в содержании белка образцов должен находиться в пределах не более 1%. Количест­во образцов не должно быть менее 10. С увеличением их числа точность определений возрастает.

Затем приведенным выше методом Дженнингса определяют оптическую плотность белковых вытяжек всех образцов.

При построении кривой на оси абсцисс откладывают величи­ны оптической плотности, а на оси ординат – содержание белка в навеске в мг.

https://pandia.ru/text/78/317/images/image004_98.gif" width="412" height="341 src=">

Рис. 3. Калибровочная кривая (нефелометрический метод)

Рефрактометрический метод

Метод основан на установлении разности показателей преломления исследуемого вещества и раствора, полученного после осаждения белков раствором хлористого кальция при кипячении.

Техника определения

Отмеривают пипеткой 5 мл исследуемого вещества (молока) в пробирку, добавляют 5-6 капель 4%-ного раствора хлористого кальция. Пробирку закрывают пробкой и помещают в баню с кипящей водой на

10 мин. Затем содержимое фильтруют через складчатый фильтр. В прозрачном фильтрате, а также в исходном молоке определяют на рефрактометре показатель преломления при 200С. Содержание белка в молоке (в %) рассчитывают по формуле

,

0,002045 – коэффициент, позволяющий выразить полученную разность показателей преломления, % от общего белка.

Метод формольного титрования

Сущность реакции формалина на белок заключается в том, что альдегидная группа формалина взаимодействует с аминогруппой белка, которая теряет свои основные свойства, в связи с чем кислые свойства белка усиливаются. Количество титруемых карбоксильных групп будет эквивалентно количеству связанных формальдегидом аминных групп.

Схематично эти реакции могут быть представлены в следующем виде:

https://pandia.ru/text/78/317/images/image009_62.gif" width="564" height="156">

Образующаяся в этой реакции метиленаминокислота является сильной кислотой. Процесс титрования этой является сильной кислотой. Процесс титрования этой кислоты щелочью протекает таким образом:

https://pandia.ru/text/78/317/images/image011_54.gif" width="456" height="144">

Техника определения

Отмеривают пипеткой 10 мл исследуемого молока и вносят его в коническую колбу вместимостью 100 мл, добавляют 10-12 капель 1%-ного спиртового раствора фенолфталеина и титруют 0,1 н. раствором NaOH до слабо-розового окрашивания, не исчезающего при взбалтывании. После этого в колбу приливают из бюретки 2 мл 30-40%-ного раствора формалина, свежее нейтрализованного щелочью до слабо-розового окрашивания по фенолфталеину.

Содержимое колбы взбалтывают, молоко обесцвечивается, записывают показание бюретки и продолжают титрование до окраски жидкости, соответствующей окраске молока до прибавления формалина.

Показания бюретки вновь записывают и устанавливают количество миллилитров щелочи, пошедшее на второе титрование. Затем рассчитывают содержание белка в молоке.

V1 – количество 0,1 н. раствора NaOH, израсходованное до прибавления формалина, мл;

V2 – общее количество 0,1 н. раствора NaOH, израсходованное после прибавления формалина, мл;

(V2-V1) – количество 0,1 н. раствора NaOH, пошедшее на нейтрализацию карбоксильных групп, мл;

(V2-V1)·1,92 – общее количество белка в молоке, %;

(V2-V1)·1,51 – содержание казеина в молоке, %.

Примечание. 1,92 и 1,51 – экспериментально установленные коэффициенты для пересчета оттитрованных карбоксильных групп на процентное содержание белка в молоке.

Отчет о лабораторной работе оформляется каждым студентом. Текст пишется темными чернилами, эскизы могут выполняться карандашом, графики результатов экспериментов строятся в масштабе.

Название работы, цель работы, краткое содержание;

Краткие выводы по работе.

Законченные и оформленные отчеты студенты предъявляют преподавателю до начала выполнения следующей работы.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Каково значение белков для организма человека. Их классификация.

2. Свойства белков.

3. Каков принцип определения, белка по методу Кьельдаля и каковы его достоинства и недостатки?

4. В чем заключается принцип биуретового метода определения белка?

5. В чем заключается принцип нефелометрического метода определения белка?

6. В чем заключается принцип нефелометрического метода определения белка?

7. В чем заключается принцип рефрактометрического метода определения белка?

8. Методика определения белков в молоке методом формольного титрования.

ЛИТЕРАТУРА

1. Пищевая химия: Лабораторный практикум: учеб. пособие для вузов /

И др. СПб.: ГИОРД, 20с.

2. Лабораторный практикум по общей технологии пищевых производств / под ред. . М.: Агропромиздат,

3. Фалунина практикум по общей технологии пищевых продуктов / . М.: Пищевая промышленность, 19с.

4. Назаров технология пищевых производств /

М.: Легкая и пищевая технология, 19с.

5. Пищевая химия / , и

др.; под ред. . 4-е изд., исправ. и доп. СПб.: ГИОРД,

6. Руководство по методам анализа качества и безопасности пищевых продуктов / под ред. , . М.: Брандес, Медицина, 19с.

МЕТОДЫ ОПРЕДЕЛЕНИЯ БЕЛКОВ

В ПИЩЕВЫХ ПРОДУКТАХ

Методические указания

к выполнению лабораторной работы

Составили: РАМАЗАЕВА Людмила Федоровна

ПОЗДЕЕВА Марина Геннадьевна

ПАЧИНА Ольга Владимировна

Необходимая суточная норма белка приводит к питанию мышечных тканей и правильному уровню аминокислот в . Симптомы переизбытка белка в организме говорят об отравлении тканей продуктами его распада, которое доставляет пациенту внутренний и внешний дискомфорт.

Белок в организме – что это?

Аминокислоты, соединённые между собой особым способом, образуют в организме высокомолекулярные органические соединения - белки. В неизменном виде протеин, поступивший в организм, не усваивается, поэтому происходит его расщепление на аминокислоты.

В организме из аминокислот образуются нужные белки, которые выполняют ряд функций:

  • Соединения являются составляющей частью органоидов и цитоплазм клеток организма. Например, белок соединительной ткани участвует в росте волос, ногтевых пластин, сухожилий и .

Белок в организме играет важную роль нормального функционирования всех органов. Поэтому очень важно контролировать дозу белка. Переизбыток протеина очень часто приводит к серьёзным заболеваниям, поэтому при первых же признаках отклонения необходимо проконсультироваться со специалистами.

Красота напрямую зависит от здоровья, и многие познания о влиянии тех или иных веществ на наш внешний вид мы впитали еще из детства. Так для ногтей, например, важен не только кальций, но и белок. Поэтому если вы хотите, чтобы ваш маникюр вызывал исключительно восхищение, стоит задуматься о том, нет ли недостатка белка в вашем рационе. Также от того, сколько пищевого белка в вашей тарелке, будет зависеть и состояние ваших волос, поэтому, пожалуй, стоит отнестись к вопросу серьезно.

А где торт?

Мы съесть торт…

Свинтусы, нужен другой торт!

Другие мы тоже съесть…

Поросята, кексики остались?

Тоже съесть…

Есть леденцы!

Я их съесть!

Нихт делиться?!

А вы со мной круассаны делиться?!

Шрек 4 (Shrek Forever After)

Недостаток белка в организме

Белки являются одними из самых необходимых веществ в организме человека. Если о дефиците витаминов и минералов мы вспоминаем практически каждую весну, списывая хандру и усталость на «авитаминоз», то о том, что многие проблемы здоровья могут быть связаны с дефицитом качественного белка, мы задумываемся мало.

Многие говорят о том, что белок – это тяжелый продукт, и есть его надо ограниченно. А некоторые и вовсе его не едят – и вроде ничего плохого не происходит. Однако белок в организме выполняет жизненно важные функции, взять на себя которые не сможет ни один другой элемент. Для чего служит белок в организме человека?

Зачем нужны белки?

Белок является основой для строительства тела. Из белков состоят мышцы, ткани, внутренние органы, кровяные клетки, иммунные тела, а также волосы, ногти и клетки и белки кожи.

Пищевые белки в организме в кишечнике разбираются до «кирпичиков» аминокислот. Аминокислоты отправляются в печень для построения и синтеза собственных белков тела, но в организме есть часть аминокислот, которые тело может произвести само, а часть должны только поступать извне. Это незаменимые кислоты, но содержат их только животные белки, в растительных белках набор аминокислот беднее, поэтому они не считаются полноценными.

Еще одной важной функцией белка является его ферментная и обменная функция. Большая часть ферментов и гормонов – это чистый белок или соединение белка с другими веществами (ионами металлов, жирами, витаминами). При нехватке белков могут страдать некоторые виды обмена, особенно это заметно при ограничительных низкобелковых диетах.

Кроме того, белки выполняют транспортную функцию, то есть они переносят в клетки и из клеток важные вещества – ионы, питательные и другие вещества. Белки защищают наш организм от инфекций, так как антитела и защитные белки слизистых – это белковые молекулы.

Белки поддерживают нашу молодость и красоту – и это происходит благодаря своевременному обновлению молекул коллагена и эластина, которые не дают обезвоживаться, стареть нашей коже, препятствуют образованию морщинок.

Как определить у себя дефицит белка?

1.Посмотрите на себя в зеркало. Если у вас дряблые мышцы, отвисшая кожа, на лице есть морщинки, а вам еще нет тридцати – проблемы с белковым обменом у вас точно есть. Если вы активно тренируетесь, при этом практически не потребляете белков, соблюдая пост или низкобелковые диеты – у вас также есть проблемы с белковым обменом. Вам следует пересмотреть свое питание, если ваш вес более чем на 25% выше нормы, а если есть ожирение – и подавно. При недостатке белка обмен веществ замедляется, что снижает активность ферментов и гормонов, а это в итоге приводит к потере мышечной массы и набору вместо нее жировой.

2.Рассмотрите свои кожу, ногти и волосы, каково их состояние? Они практически полностью имеют белковое происхождение, и при его недостатке серьезно страдают. Если организм живет в условиях хронического дефицита белка, появляется дряблость и бледность кожи, ее дефекты, хрупкие волосы, слоящиеся и плохо отрастающие ногти.

3.Проблемы иммунитета – частые простуды, аллергии, дерматиты и гнойничковые высыпания. В основном они тоже связаны с дефицитом белков, иммунные клетки и антитела просто не из чего строить.

4.Могут быть расстройства пищеварения, запоры, общее недомогание, быстрая утомляемость, низкая устойчивость к стрессам.

Как пополнить запасы белка

Для того чтобы избежать проблем с белковым голоданием и нарушений, связанных с нехваткой белка в организме, необходимо провести ряд превентивных мер, прежде всего, касающихся питания и образа жизни.

1.Критически пересмотрите свое питание

Вам может казаться, что вы едите много мясного, но по факту эти продукты содержат очень мало качественного пищевого белка (а то и не содержат вовсе). Относительно причисляются к мясу и мясным продуктам такие традиционные продукты нашего стола как:

Вареные или копченые колбасы, сардельки и сосиски, даже сделанные по ГОСТу. Белка в них критически мало для полноценного обеспечения организма.

Полуфабрикаты с «мясом», магазинные котлеты, пельмени. Роль мяса там играют соевые белки и ароматизаторы.

Копченые окорока, рульки, рулеты и т. д. Мясо там проходит термические или маринадные обработки, качество его также страдает. Неизвестно также, где, как и из какого мяса это готовили, соблюдались ли элементарные санитарные нормы.

В качестве разнообразия изредка можно полакомиться этими продуктами, но использовать их часто не стоит – тем более как источник белка!

2. Выбирайте постные сорта мяса и нежирную рыбу

Жиры мешают полноценному усвоению белка. Самыми жирными являются семга, сом, гусь и утка, печень трески, свинина и говяжья грудинка. Самыми лучшими источниками белка являются курица без кожи, говядина, кролик, индейка, яйца, хотя растительным белком в виде бобовых, орехов и гречневой крупы также следует разнообразить свой рацион.

При этом самыми полезными способами приготовления мяса являются запекание в фольге, гриль, шашлык, приготовление на пару, тушение. Жарка мяса – самый вредный способ приготовления.

3.Ешьте белок отдельно

Белковую пищу следует есть отдельно от картофеля, крупы и без хлеба, так они усваиваются плохо. Лучше комбинировать мясо с овощами – свежими или тушеными, они помогут усвоить белок. Употребляйте белковую пищу до 6 вечера, так как переваривание ее в ночное время затруднено.

При этом не стоит перегружать организм белком, так как избыток белка приводит к процессам гниения в кишечнике и интоксикации продуктами метаболизма, запорам и чувству тяжести в животе.

Молоко - один из самых ценных продуктов питания человека. Роль молока как полноценного пищевого продукта в поддержании процессов жизнедеятельности организма хорошо известна. Особую ценность представляют белки молока - наиболее важные в биологическом отношении органические вещества. Образующиеся в результате расщепления белков аминокислоты идут на построение клеток организма, ферментов, защитных тел, гормонов и прочее. Некоторые аминокислоты легко образуются в организме из других кислот, но есть и такие, которые должны поступать с пищей. Эти аминокислоты (лизин, триптофан, метионин, фенилаланин, лейцин, изолейцин, треонин, валин) называют незаменимыми. Количество многих незаменимых аминокислот в сывороточных белках молока значительно выше не только по сравнению с белками растительных продуктов, но и с некоторыми белками мяса и рыбы.

Кроме того, казеин и сывороточные белки молока обладают рядом важных функциональных свойств (водосвязывающая, эмульгирующая, пенообразующая способность), позволяющих использовать их концентраты в качестве стабилизаторов, эмульгаторов разнообразных продуктов (мороженое, кремы, пудинги и прочее).

Обычно в молоке контролируют массовую долю белков (общий белок), включающих казеин и сывороточные белки. Реже в молоке определяют только содержание казеина.

Для контроля массовой доли белка в молоке имеется несколько методов. Арбитражным считается сложный химический метод Кьельдаля ГОСТ23327-98 «Молоко. Методы определения общего белка».

Метод Кьельдаля

Метод основан на сжигании органических компонентов пробы молока в колбе Кьельдаля в присутствии серной кислоты; освобождающийся при этом азот определяют титрованием и по его количеству вычисляют содержание белка.

Для проведения измерения в колбу Кьельдаля последовательно помещают несколько стеклянных бусинок или кусочков фарфора, около 10 г сульфата калия, 0,04 г сульфата меди. В бюксу с крышкой отмеривают 5 см³ молока, крышку закрывают и взвешивают. Молоко из бюксы переливают в колбу. Пустую бюксу вновь взвешивают и по разнице между массой бюксы с молоком и массой пустой бюксы вычисляют массу взятого молока. В колбу добавляют 20 см³ серной кислоты, осторожно вливая ее по стенкам колбы, смывая с них капли молока. Колбу закрывают грушеобразной стеклянной пробкой и осторожно круговыми движениями перемешивают содержимое колбы.

Колбу ставят на нагревательный прибор в наклонном положении под углом 45º и осторожно нагревают до тех пор, пока не прекратится пенообразование и содержимое колбы не станет жидким. Затем сжигание продолжают при более интенсивном нагревании. Степень нагревания считают достаточной, когда кипящая кислота конденсируется в середине горловины колбы Кьельдаля.

Время от времени содержимое колбы перемешивают, смывая обуглившиеся частицы со стенок колбы. Нагревание продолжают до тех пор, пока жидкость не станет совершенно прозрачной и практически бесцветной (при применении в качестве катализатора окиси ртути) или слегка голубоватой (при применении в качестве катализатора сульфата меди). После осветления раствора нагревание продолжают в течение 1,5 час., после чего колбе дают остыть до комнатной температуры. Добавляют 150 см³ дистиллированной воды и несколько кусочков свежепрокаленной пемзы, перемешивают и снова охлаждают.

В коническую колбу отмеривают 50 см³ раствора борной кислоты, добавляют 4 капли индикатора и перемешивают.

Коническую колбу соединяют с холодильником с помощью аллонжа и резиновой трубки так, чтобы конец аллонжа был погружен в раствор борной кислоты в конической колбе. Колбу Кьельдаля соединяют с холодильником при помощи каплеуловителя, проходящего через одну пробку с делительной воронкой. Градуированным цилиндром отмеряют 80 см³ раствора гидроксида натрия (реактив 3) (при применении в качестве катализатора красного оксида ртути используют раствор гидроксида натрия, содержащий сульфид натрия) и через делительную (капельную) воронку вносят его в колбу Кьельдаля. Сразу же после выливания раствора кран делительной воронки закрывают для избежания потери образующегося аммиака.

Содержимое колбы Кьельдаля осторожно смешивают круговыми движениями и нагревают до кипения. При этом необходимо избегать пенообразования.

Перегонку продолжают до тех пор, пока жидкость не начнет булькать. При этом регулируют степень нагрева так, чтобы время дистилляции было не менее 20 минут. Убедиться в полноте перегонки аммиака можно путем дополнительной перегонки в новую порцию борной кислоты (20 см³) в течение 5 минут. Окраска раствора борной кислоты должна оставаться без изменений. При перегонке не допускают нагревания раствора борной кислоты в конической колбе. Слишком сильное охлаждение

(ниже 10ºС) также нежелательно, так как оно может вызвать переброс жидкости из конической колбы в колбу Кьельдаля.

Перед окончанием перегонки коническую колбу опускают так, чтобы конец аллонжа был над поверхностью раствора борной кислоты, и продолжают перегонку в течение 1-2 минут.

После прекращения нагревания отсоединяют аллонж. Внешнюю и внутреннюю поверхности аллонжа ополаскивают небольшим количеством дистиллированной воды, сливая ее в коническую колбу.

Дистиллят титруют раствором соляной кислоты до перехода зеленого цвета в серый. При избытке титранта раствор приобретает фиолетовый цвет.

Параллельно так же, как и основной проводят контрольный опыт, применяя 5 см³ дистиллированной воды место молока. Количество повторностей контрольного опыта должно быть не менее 5.

По объему аммиака, определяемого титрованием кислотой, устанавливают количество общего азота при умножении последнего на принятый коэффициент 6,38 и таким образом находят содержание общего белка в молоке.

Три следующих метода описаны в ГОСТе 25179-90 «Молоко. Методы определения белка».

Рефрактометрический метод

Метод основан на установлении разности показателей преломления луча света после прохождения его через молоко и полученной из него безбелковой сыворотки (для осаждения белков используют раствор хлорида кальция и нагревание пробы).

Массовую долю белков в молоке данным методом определяют на рефрактометре ИРФ-464.

Для измерения в 3 флакона наливают по 5 см³ молока, добавляют по 6 капель раствора хлорида кальция. Флаконы закрывают пробками и перемешивают путем переворачивания флаконов.

Далее флаконы помещают в водяную баню, наливая воду таким образом, чтобы ее максимальный уровень достигал половины высоты флаконов. Баню закрывают, помещают на электроплитку, воду в бане доводят до кипения и кипятят не менее 10 минут. Не открывая бани, горячую воду сливают через отверстие в крышке, наливают в баню холодную воду и выдерживают в ней не менее 2 минут.

Открывают баню, извлекают флаконы и разрушают белковый сгусток путем энергичного встряхивания флаконов.

Флаконы помещают в центрифугу и центрифугируют не менее 10 минут. Образовавшуюся прозрачную сыворотку отбирают пипеткой и наносят на измерительную призму рефрактометра 1-2 капли. Измерительную призму закрывают осветительной.

Наблюдая в окуляр рефрактометра, специальным корректором убирают окрашенность границы света и тени. Для улучшения резкости границы измерение проводят через одну минуту после нанесения сыворотки на призму, так как за это время из пробы удаляется воздух и поверхность осветительной призмы лучше смачивается.

По шкале «Белок» проводят не менее трех наблюдений. Затем сыворотку с призмы рефрактометра удаляют, промывают ее водой и вытирают фильтровальной бумагой.

На измерительную призму помещают две капли исследуемого молока и по шкале «Белок» проводят не менее пяти наблюдений, так как резкость границы света и тени у молока хуже, чем у сыворотки.

Массовую долю белка в молоке Х 1 (%) вычисляют по формуле:

Х 1 =Х 2 -Х 3 ;

где Х 2 - среднее арифметическое значение результатов наблюдения по шкале «Белок» для молока (%);

Х 3 - среднее арифметическое значение результатов наблюдения по шкале «Белок» для сыворотки (%).

Колориметрический метод

Колориметрический метод основан на способности белков молока при рН ниже изоэлектрической точки связывать кислый краситель, образуя с ним нерастворимый осадок, после удаления которого измеряют оптическую плотность исходного раствора красителя относительно полученного раствора, которая уменьшается пропорционально массовой доле белка.

Методика определения массовой доли белков в молоке сводится к следующему. В пробирку отмеряют 1 см³ молока, приливают 20 см³ рабочего раствора сине-черного красителя (готовится путем смешивания водного раствора красителя и кислого буферного раствора с добавлением поверхностно-активного вещества) и смесь интенсивно перемешивают. Выпавший осадок центрифугируют или отфильтровывают. Полученный фильтрат разводят в 100 раз и колориметрируют на фотоколориметре КФК-3 при длине волны 500-600 нм в кювете с рабочей длиной 10 мм.

Массовую долю белков в молоке устанавливают в процентах, пользуясь градуировочным графиком. Для построения графика в нескольких пробах молока (с массовой долей белков 2,5-3,5%) определяют содержание белков методом Кьельдаля и оптическую плотность фильтрата, полученного указанным способом.

Метод формольного титрования

Метод применяют при условии согласия с поставщиком.

Метод формольного титрования основан на нейтрализации карбоксильных групп моноаминодикарбоновых кислот белков раствором гидроксида натрия, количество которого, затраченное на нейтрализацию, пропорционально массовой доле белка в молоке. Для проведения подготавливают, согласно инструкции, рН-метр-термометр «Нитрон». Бюретку, вместимостью не менее 5 см 3 с ценой деления не более 0,05 см 3 заполняют раствором гидроксида натрия с молярной концентрацией 0,1 моль/дм 3 . Для определения поправки к результатам измерения массовой доли белка методом формольного титрования проводят одновременное измерение массовой доли белка в одном и том же образце молока методом формольного титрования и по ГОСТ 23327.

В стакан помещают 20 см 3 молока и стержень магнитной мешалки. Стакан устанавливают на магнитную мешалку, включают двигатель мешалки и погружают электроды потенциометрического анализатора в молоко. Титруют раствор гидроксида натрия в стакан с молоком до точки эквивалентности равной 9 единицам рН, подавая раствор по каплям начиная с рН 4 и делают 30-секундную выдержку после достижения точки эквивалентности. Определяют количество раствора щелочи, затраченной на нейтрализацию молока, до внесения формальдегида, и вносят в стакан 5 см 3 формальдегида.

По истечении 2-2,5 минут вновь титруют раствор гидроксида натрия в стакан с молоком до точки эквивалентности равной 9 единицам рН, подавая раствор по каплям начиная с рН равное 4 и деляют 30-секундную выдержку после достижения точки эквивалентности.

Параллельно проводят контрольный опыт по нейтрализации смеси 20 см 3 воды и 5 см 3 раствора формальдегида.

Массовую долю белка Х 7 (%) вычисляют по формуле:

Х 7 =(V 2 -V 1 -V 0) 0,96+Х 4 ;

где V 2 - общее количество раствора, израсходованное на нейтрализацию, см 3 ;

V 1 - количество раствора, израсходованное на нейтрализацию до внесения формальдегида (см 3);

V 0 - количество раствора, израсходованное на контрольный опыт (см 3);

0,96 - эмпирический коэффициент (%/ см 3);

Х 4 - поправка к результату измерения массовой доли белка (%).

Поправку Х 4 (%) вычисляют по формуле Х 4 =Х 5 -Х 6,

ГДЕ Х 5 - среднее арифметическое значение массовой доли белка, полученное по ГОСТ23327 (%);

Х 4 - среднее арифметическое значение массовой доли белка, полученное формольным титрованием (%).

Все вышеперечисленные методики определения белка имеют существенные недостатки: длительность определения, использование дорогостоящих реактивов, повышенная опасность для обслуживающего персонала.

Разработанный в последние годы электронный ультразвуковой анализатор молока «Клевер-2» лишен этих недостатков. Без применения химических реактивов прибор измеряет одновременно содержание массовой доли жира, сухого обезжиренного молочного остатка (СОМО), плотность, белок, количество добавленной воды и температуру пробы.

Принцип действия прибора основан на измерении скорости распространения ультразвуковых колебаний в зависимости от температуры и состава молока.

Анализатор молока «Клевер-2» работает следующим образом. В режиме измерения дегазированную пробу молока заливают в пробозаборник прибора, где ее последовательно нагревают до двух заданных температур, при каждой из которой определяют скорость ультразвука. На основе полученных данных микропроцессор автоматических вычисляет массовые доли белка, жира, плотности, СОМО, количество добавленной воды и температуру пробы молока. Полученные значения отображаются на цифровом индикаторе прибора. Процесс измерения полностью автоматизирован.

Прибор прост в обслуживании и портативен. Температура пробы молока может быть от 10º до 30ºС. Время измерения три минуты.

Использование анализатора молока «Клевер-2» позволяет значительно сократить трудовые ресурсы на проведение анализа, исключить приготовление реактивов, характерных для традиционных методов, сократить площади лабораторий.

Анализаторы на основе ультразвукового метода компактны, просты в эксплуатации, имеют умеренную цену и перспективны как на мини-заводах, заводах средней мощности, так и на животноводческих фермах и в фермерских хозяйствах.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал