Общие свойства систем, способных к самоорганизации. Возникновение самоорганизации Процессы самоорганизации

Главная / Электроснабжение

Введение

1. Теория самоорганизации

Заключение

Список литературы

Введение

Самоорганизация - целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Свойства самоорганизации обнаруживают объекты различной природы: клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив .

Основной критерий рaзвития сaмооргaнизующихся систем - увеличение зaпaсa свободной энергии, которaя может быть высвобожденa для совершения полезной рaботы. При этом aбсолютно не вaжнa природa сaмой системы - будь то примитивнaя тепловaя мaшинa или экономикa огромной стрaны - если системa нерaвновеснa и обменивaется веществом и энергией с окружaющей средой, для нее спрaведливы все нaиболее общие зaкономерности рaзвития. К примеру в привычных терминaх мaрксистской политэкономии укaзaнный критерий рaзвития формулируется кaк зaкон прибaвочной стоимости или добaвочного продуктa - дело лишь в обознaчениях, a по смыслу эти понятия изоморфны. И если в дaльнейшем кaкие-либо сугубо экономические кaтегории, трaктуемые с энерговещественной точки зрения, покaжутся неоднознaчными или дaже спорными, стоит зaдумaться - a столь ли всеобщей является нaукa экономикa, может в ней покудa не открыты ряд фундaментaльных зaконов?

Цель работы – рассмотреть процессы самоорганизации.

Задачи работы – определить теорию самоорганизации; охарактеризовать неравновесные процессы и открытые системы; изучить самоорганизацию диссипативных структур.


Небезызвестный Г.Беккер недaвно получил Нобелевскую премию зa теорию экономической мотивaции социaльных явлений, однaко те же сaмые мотивaции элементaрно следуют из принципa нaименьшего действия, известного в физике кaк минимум сотню лет.

Возврaщaясь ко всеобщим энерговещественным зaкономерностям прогрессирующего рaзвития, отметим, что в сопряженной системе рост свободной энергии возможен кaк зa счет внешних фaкторов - экстенсивный путь рaзвития, тaк и зa счет внутренних - интенсивный. В реaльных условиях, когдa мощность сопрягaющего потокa конечнa, экстенсивное рaзвитие всегдa имеет предел, после которого для продолжения рaзвития системе необходимо переходить нa интенсивный путь, связaнный с ростом эффективности использовaния получaемой энергии, увеличением собственого к.п.д., что будет ознaчaть концентрировaние энергии в единице объемa. Если для экстенсивного пути рaзвития хорошим aнтропогенным aнaлогом является нaрaщивaние мощности мускулaтуры, то для интенсивного весьмa покaзaтельным будет следующий бытовой пример. Мы приклaдывaем примерно рaвные мышечные усилия при рaсчесывaнии волос и при бритье, однaко в последнем случaе тa же энергия концентрируется нa микронной поверхности и создaет дaвление порядкa сотен aтмосфер, что сопостaвимо с лучшими промышленными прессaми и во много крaт превышaет физические возможности человекa. Концентрировaннaя энергия выполняет большую рaботу, нежели неконцентрировaннaя - в этом суть интенсивного этaпa рaзвития, нa котором сегодня нaходится человечество.

Однaко, и интенсивный путь рaзвития не может быть бесконечным - при к.п.д., близком к единице, он зaвершaется - системе рaзвивaться дaльше просто некудa. В этом состоянии выбор невелик - либо дегрaдировaть, исчерпaв весь зaпaс ресурсa , либо зaмкнуть энерговещественные циклы и функционировaть рaвновесно. В результaте подобного естественного отборa сохрaняются лишь те системы, которые функционируют нa принципaх зaмкнутых циклов - этот тип рaзвития получил нaзвaние экологического. Следует отметить, что исследовaние всех в принципе возможных способов обменa веществом и энергией в aбстрaктной сaмооргaнизующейся системе привело к структуре, с точностью до мелких детaлей совпaдaющей со структурой экосистем, определенной в экологии эмпирически. Это является дополнительным подтверждением необходимости переориентaции техносферы нa биологические принципы функционировaния, свойственные именно экологическому типу рaзвития.

Выводы очевидны. Первый зaключaется в неизбежности переходa любой рaзвивaющейся мaтериaльной системы от экстенсивного пути рaзвития к интенсивному, a зaтем и экологическому. Сегодня по всем признaкaм мы нaходимся нa этaпе переходa к интенсивной модели, и несмотря нa все рaзговоры о постиндустриaльной эпохе, пройдет еще немaло времени до того моментa, когдa человечество зaмкнет циклы. Второй вывод отдaет нaлетом фaтaльности - с энерговещественной точки зрения любое рaзвитие огрaничено. Дaже если удaстся решить проблему термоядерного синтезa, то aссимиляционнaя способность среды все-рaвно не позволит человечеству рaзвивaться беспредельно и венцом его рaзвития по-прежнему будут зaмкнутые энерговещественные циклы.

Ознaчaет ли это конец истории? Безусловно нет, и здесь будет уместнa следующaя эволюционнaя aнaлогия. При формировaнии биосферы вся солнечнaя энергия внaчaле шлa нa увеличение биомaссы. Когдa же циклы зaмкнулись и биомaссa плaнеты стaбилизировaлaсь, стaло можно вести речь о том, что вся поступaющaя энергия прaктически целиком преврaщaлaсь в информaцию - рaзнообрaзие биоты, способов ее существовaния, первичных нaвыков, позже - непосредственно в человеческие знaния. То есть суть экологического пути рaзвития - опосредовaнaя трaнсформaция энергии в информaцию, знaния. Прогресс и дaльнейшее рaзвитие безусловно будут, но в принципиaльно иной – интеллектуальной сфере. Переход к этому этaпу рaзвития ознaменуется мaсштaбным мировым кризисом, ниспровергaющим сложившуюся систему мaтериaльных ценностей и утверждaющим в кaчестве основной ценности внутренний мир человекa, его индивидуaльный и коллективный рaзум. Все мaтериaльное, о чем тaк печется современный человек, будет игрaть вспомогaтельную роль, кaкую выполняет, нaпример, электричество для компьютерa, нa первый плaн выйдет информaция, знaния, смысл .

2. Неравновесные процессы и открытые системы

Кристаллы - упорядоченные равновесные структуры. В природе существуют и иные упорядоченные структуры, которые возникают в диссипативных системах. Диссипативная система является подсистемой больших неравновесных термодинамических систем.

Циркуляционные потоки в атмосфере и океанах Земли - под действием солнечного излучения - самоорганизация на Земле.


2. Ячейки Бенара - самоорганизация в физических явлениях

3. Химическая реакция Белоусова-Жаботинского - самоорганизация в химии

Под воздействием BrO3-, H+ в растворе происходят реакции:

Ce3+-> Сe4+ - окисление, цвет раствора голубой.

Сe4+ -> Сe3+ - восстановление, цвет раствора красный. Таким образом, имеется автоколебательный процесс изменения концентрации четырехвалентного церия с одновременным варьированием цвета

На поверхности раствора появляются поверхностные волны (химические спиральные волны)

4. Динамика популяций хищников и их жертв - самоорганизация в биологии.

Неравновесные процессы с возникновением в системах упорядоченных структур - диссипативных структур. Самоорганизация не связана с особым классом веществ, но она существует лишь в специальных системах, удовлетворяющих условиям:

а) открытые системы, т.е. открытые для притока энергии (вещества) извне;

б) макроскопические системы, т.е. системы описываются нелинейными уравнениями.

Следует также отметить, что диссипативные структуры являются устойчивыми образованиями, и их устойчивость определяется устойчивостью внешнего источника энергии .

3. Самоорганизация диссипативных структур

Самоорганизующимися процессами называют процессы, при которых возникают более сложные и более совершенные структуры. Это определение позволяет выделить самоорганизацию как один из возможных путей эволюции и отнести этот процесс к условиям, далеким от термодинамического равновесия. Эволюция может приводить и к деградации. Так, в закрытых системах, когда движущая сила процесса - стремление системы к минимуму свободной энергии, достигаемое равновесное состояние является наиболее хаотическим состоянием среды. Если же эволюция системы контролируется минимумом производства энтропии (неравновесные условия), происходит самоорганизация динамических структур, названных диссипативными. К диссипативным структурам относятся пространственные, временные или пространственно-временные структуры, которые могут возникать вдали от равновесия в нелинейной области, если параметры системы превышают критические значения. Диссипативные структуры могут перейти в состояние термодинамического равновесия только путем скачка (в результате неравновесного фазового перехода). Основные их свойства следующие:

они образуются в открытых системах, далеких от термодинамического равновесия, в результате флуктуации до макроскопического уровня;

их самоорганизация происходит в результате экспорта энтропии;

возникновение пространственного или временного порядка аналогично фазовому переходу;

переход в упорядоченное состояние диссипативной системы происходит в результате неустойчивости предыдущего неупорядоченного состояния при критическом значении некоторого параметра, отвечающем точке бифуркации;

в точке бифуркации невозможно предсказать, в каком направлении будет развиваться система, станет ли состояние хаотическим или она перейдет на новый, более высокий уровень упорядоченности.

Таким образом, диссипативные структуры - это высокоупорядоченные самоорганизующиеся образования в системах, далеких от равновесия, обладающие определенной формой и характерными пространственно-временными размерами, они устойчивы относительно малых возмущений. Важнейшие характеристики диссипативных структур - время жизни, область локализации и фрактальная размерность. Диссипативные структуры отличаются от равновесных тем, что для своего существования они требуют постоянного притока энергии извне, так как по определению, их самоорганизация связана с обменом энергией и веществом с окружающей средой.

Под диссипативной системой понимают систему, полная механическая энергия которой при движении убывает, переходя в другие формы, например в тепло. Соответственно диссипация энергии есть переход части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту.

Процесс перехода "устойчивость-неустойчивость-устойчивость" следующий. Первоначально устойчивая диссипативная структура, достигая в процессе эволюции системы порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.

Одним из типичных примеров самоорганизации диссипативных структур является переход ламинарного течения жидкости в турбулентное. До недавнего времени он отождествлялся с переходом к хаосу.

Таким образом, гидродинамическая неустойчивость при переходе ламинарного течения в турбулентное связана с образованием динамических диссипативных структур в виде вихрей .


Разработкой теории самоорганизации занимаются несколько научных дисциплин:

1. Термодинамика неравновесных (открытых) систем.

2. Синергетика.

Образование упорядоченных структур, происходящие не за счет действия внешних сил (факторов), а в результате внутренней перестройки системы, называется самоорганизацией. Самоорганизация - фундаментальное понятие, указывающее на развитие в направлении от менее сложных объектов к более сложным и упорядоченным формам организации вещества.

В каждом конкретном случае самоорганизация проявляется по-разному, это зависит от сложности и природы изучаемой системы.

Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.


1. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004.

2. Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006.

3. Моисеев Н. Экология М.: Молодая гвардия, 1988.

4. Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984.

5. Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966.


Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006. С. 122.

Моисеев Н. Экология М.: Молодая гвардия, 1988. С. 141.

Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966. С. 104-105.

Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004

Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984. С. 180.

Самоорганизация - это процесс эволюции от беспоряд­ка к порядку. Естественно энтропия системы, в которой происходит самоорганизация, должна убывать. Однако это ни в коей мере не противоречит закону возрастания энтропии в замкнутой системе, то есть второму началу тер­модинамики. Из приведенных выше примеров видно, что все подобные системы являются открытыми система­ми, то есть обменивающимися с окружающими их систе­мами либо веществом, либо энергией или и тем, и дру­гим. Понятно, что можно выделить замкнутую систему, в которой происходит самоорганизация. Например, мож­но представить себе изолированный от излучения звезд космический корабль, в котором произрастают растения. Очевидно, однако, что в любой такой замкнутой системе можно выделить подсистему, в которой именно и проис­ходит самоорганизация, и энтропия которой убывает, в то время как энтропия замкнутой системы в целом воз­растает в полном соответствии со вторым началом термо­динамики.

Таким образом, можно сформулировать общее прави­ло: процессы самоорганизации происходят в открытых системах. Если самоорганизация происходит в замкнутой системе, то всегда можно выделить открытую подсисте­му, в которой происходит самоорганизация, в то же время в замкнутой системе в целом беспорядок возрастает.

Следующей особенностью является то, что самоорга­низация происходит в системах, состояние которых в дан­ный момент существенно отлично от состояния статисти­ческого равновесия. Иногда упрощенно говорят, что к са­моорганизации способны системы, находящиеся вдали от равновесия. Нарушение статистического равновесия вы­зывается внешним воздействием. В приведенном выше примере с ячейками Бенара внешнее воздействие - это нагревание сосуда, которое приводит к различию темпе­ратур в отдельных макроскопических областях жидкости. В электрических генераторах внешнее воздействие - это напряжение, создаваемое источником, которое приводит к отличному от равновесного распределению электронов. То же происходит в оптических квантовых генераторах под воздействием внешней оптической накачки или элек­трического разряда, происходящего от внешнего источ­ника. Состояние системы, далекой от равновесия, является неустойчивым, в отличие от состояния вблизи равно­весия. Именно в силу этой неустойчивости и возникают процессы, приводящие к возникновению структур.

Самоорганизация возможна лишь в системах с боль­шим числом частиц, составляющих систему. В ряде слу­чаев это достаточно очевидно, поскольку, например, мак­роскопические пространственные структуры содержат большое число атомов и молекул. Однако если обратить­ся к примеру с автоколебаниями популяций, то можно утверждать, что при малом числе особей в популяции такие автоколебания невозможны. Дело в том, что толь­ко в системах с большим числом частиц возможно воз­никновение флуктуации - макроскопических неоднородностей.


Роль флуктуации в процессах самоорганизации, как мы далее покажем, оказывается весьма важной, поэтому рассмотрим это понятие подробнее. Если мы возьмем мак­роскопический сосуд, в котором находится порядка деся­ти молекул, то понятия плотности или давления в такой системе теряют смысл. Эти понятия применимы лишь к сосуду, содержащему большое число частиц, именно в этом случае мы можем измерить давление нашими приборами. При статистическом равновесии, как следует из опреде­ления, в различных областях пространства сосуда прибор должен показывать одинаковое давление. Однако оказы­вается, что в достаточно малых (но макроскопических) областях в какие-то моменты времени это давление, а, сле­довательно, и плотность, отличается от среднего давления и средней плотности в сосуде. Самопроизвольное (спон­танное) отклонение от состояния статистического равно­весия и называется флуктуацией. В случае с газом или жидкостью в сосуде флуктуации давления невозможно наблюдать обычными манометрами. Тем не менее именно такими флуктуациями объясняется броуновское движе­ние. Его можно наблюдать, если в сосуд с жидкостью по­местить легкую, но в то же время видимую в микроскоп частицу (напомним, что молекулы жидкости наблюдать в микроскоп невозможно). Опыт показывает, что частица совершает сложные хаотические, но вполне регистрируе­мые движения. Такое движение было названо броуновским.

Объяснение этого опыта было дано А. Эйнштейном и М. Смолуховским, которые показали, что оно является результатом возникновения по разные стороны частицы областей с разным числом молекул жидкости. Наличие флуктуации характерно для любой системы, содержащей большое число частиц.

Эволюция систем, способных к самоорганизации, опи­сывается нелинейными уравнениями. В задачу данного курса не входит исследование уравнений, поэтому мы не будем давать строгого определения нелинейности, а лишь проиллюстрируем некоторые важные свойства, следую­щие из нелинейности уравнений.

В отличие от систем, эволюция которых описывается линейными уравнениями, а малые изменения начального состояния которых приводят к малым изменениям их ко­нечного состояния через ограниченный промежуток времени, для систем, описываемых нелинейными уравнения­ми, такое свойство, вообще говоря, не имеет места.

Для иллюстрации вспомним выражение для траекто­рии материальной точки в однородном поле силы тяже­сти: r (t) = g t 2 /2 + v (0)t + г (0). В этом уравнении на­чальное состояние в момент t = 0 определяется начальной координатой г (0) и начальной скоростью v (0), от которых уравнение зависит линейно. При малом изменении этих параметров координата и скорость в любой последующий момент времени изменятся незначительно.

Противоположный пример, когда малые изменения начальной координаты и начальной скорости приводят к радикальному изменению эволюции, реализуется в игре «детский биллиард». Скатываясь по наклонной плоско­сти, шарик ударяется и отскакивает от нескольких штырь­ков. Достаточно очевидно, что конечное состояние (поло­жение) шарика полностью определяется начальными ус­ловиями и в то же время повторить траекторию шарика практически невозможно (в чем собственно и заключает­ся смысл игры). Если описать движение шарика при по­мощи уравнений, которые в этом случае имеют, естест­венно, более сложный вид, то оказывается, что эти урав­нения нелинейно зависят от начальных условий.

Строго говоря, фундаментальные законы естествозна­ния в современных теориях всегда являются нелинейны­ми, линейность является некоторым приближением, ко­торое иногда оправданно. Говоря о том, что системы, спо­собные к самоорганизации, описываются нелинейными уравнениями , мы подразумеваем, что эффекты, обуслов­ленные нелинейностью, являются достаточно значитель­ными по сравнению с флуктуациями. Заметим, что при планировании своих действий чело­век на уровне обыденного сознания всегда мыслит в ли­нейном приближении, которое часто не оправдано, если речь идет о достаточно сложных системах, например при планировании социальных и экономических процессов в обществе.

II. Системные свойства организации. (22.02.13)

Представление организации как системы позволяет выделить ряд присущих ей общих свойств .

К этим свойствам относятся: целостность, эмерджентность, гомеомтазис.

Любую организацию можно рассматривать как интегрированное целое, в котором каждый структурный элемент занимает строго определенное место.

Понятие целостности (связности, единства целого) неразрывно связано с понятием эмерджентности.

Эмерджентностью называется наличие качественно новых свойств целого, отсутствующего у его составных частей.

Организация, будучи целостным системным образованием, обладает свойством устойчивости , т.е. всегда стремится восстановить нарушенное равновесие, компенсируя возникающее под влиянием внешних факторов изменения. Указанное явление носит называние гомеомтазис.

III. Организация и управление

В организациях различного уровня можно выделить управляющую (субъект) и управляемую (объект) части, а также систему связей между ними, которые в целом нередко называют «система управления».

Управляющая и управляемая системы организации

Связь в системе управления – это то, что объединяет объект и субъект управления в единое целое.

Ее следует рассматривать как источник информации для выработки управляющего воздействия.



Через каналы связи движутся потоки информации, запитывающие все подсистемы организации и обеспечивающие достижение ее целей.

Понятие организация и управление соотносятся между собой , во-первых , управление, а именно управляющая система уже сама по себе организация, некое единое упорядоченное целое, состоящее из различных элементов, складывающихся определенным образом в сформировавшуюся структуру. Эта структура полностью обладает системными свойствами организации. Во-вторых , управление можно рассматривать как часть организации, выполняющую особую функцию по поддержанию в допустимых пределах отклонений системы от заданных целей. В-третьих , организация как процесс по упорядочению в организованных системах выступает в виде функций управления и с этой точки зрения является составной частью управления.

Подходы к изучению проблем организации

Организация как целостное явление может быть раскрыта лишь тогда, когда будет исследоваться нами в междисциплинарном аспекте, важнейшей особенностью которого является комплексный подход к изучаемому объекту.

Системный подход при исследовании свойств организации позволяет установить ее целостность, системность и организованность. Структура как внутренняя организация системы отражение ее внутреннего содержания выявляется как упорядоченность взаимосвязей ее частей, что в конечном итоге позволяет выразить ряд существенных сторон организации как системы.

Но для познания сущности организации надо знать не только, как она внутренне устроена, но и то, как она функционирует, т.е. раскрыть ее поведение, это можно сделать с помощью функционального подхода.

Функциональный подход дает возможность изучить проявление целенаправленности и активность деятельности организации, ее функции по отношению к системе более высокого уровня, взаимодействие рассматриваемой системы с другими объектами системного и несистемного порядка, зависимость между отдельными компонентами данной системы.

Системно-исторический подход предполагает рассмотрение любой организации во времени. Применение принципа историзма в исследовании организации позволяет проследить историю зарождения этих систем, выявить источники и предпосылки их возникновения, этапы развития, причины усложнения и расширения функций, структуры, перехода из одного качественного состояния в другое, выявить закономерности развития в будущем.

Самоорганизация. Общая характеристика процесса самоорганизация.

Процессы организации могут быть условно разделены на самоорганизуемое и смешанное. Самоорганизуемые процессы – это те процессы, которые совершаются сами по себе, благодаря взаимодействию тех или иных факторов в то время как организуемые кто-то или что-то осуществляет, направляет как бы волевым порядком.

Процессы самоорганизации - это процессы, в ходе которых что-то образуется, самовоспроизводится и самосовершенствуется. Отличительной их особенности является целенаправленный, но вместе с тем естественный спонтанный характер. Эти процессы протекают при взаимодействии с окружающей средой, в той или иной мере автономны, относительно независимы от нее.

Для описания самоорганизации используется Дарвиновская триада: изменчивость, наследственность, отбор.

В основе изменчивости лежат факторы стохастики и неопределенности. Изменчивость проявляется по-разному на всех этапах развития, одним из ее проявлений являются механизмы кооперативности, т.е. объединения элементов в новые системы или подсистемы.

Наследственность выражает то, что настоящее и будущее любого элемента не определяется, а зависит от прошлого. Степень зависимости от прошлого может быть разной и называется памятью системы.

Изменчивость создает поле возможностей развития той или иной системы, наследственность ограничивает это поле, а отбор выбранного реализуемого варианта развития определяется, прежде всего, правилами или принципами среди которых и законы сохранения.

Основной характеристикой самоорганизации любой системы, ее эволюции является необратимость , выражающаяся в саморазвитии систем и их определенной направленности. Кооперативные процессы как результат самоорганизации, как и формирование, и развитие новых структур является результатом действия случайных факторов. Началом любого развития служат случайные изменения , которые постепенно приводят к неустойчивости системы. Рынок в экономическом смысле это частный случай того рынка, который является естественным средством сопоставления качества различных форм организации, их отбраковки и основным фактором, определяющим развитие. Рынок – результат процесса самоорганизации, главное свойство которого поддерживать состояние условного равновесия и определенного порядка систем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Кафедра «Общепрофессиональные и специальные дисциплины по юриспруденции»

Контрольная работа

По курсу: «Концепция современного естествознания»

самоорганизация система материя

Введение

1. Понятие самоорганизации

2. Самоорганизация систем

3. Типы процессов самоорганизации

4. Самоорганизация сложных систем

5. Услови я возникновения самоорганизации

6. Самоорганизация в живой природе

Заключение

Список использованной литературы

Введение

Наш мир, все, что доступно в нем наблюдению претерпевают непрерывные изменения - мы наблюдаем его непрекращающуюся эволюцию. Все подобные изменения происходят за счет сил внутреннего взаимодействия, во всяком случае, никаких внешних по отношению к нему сил мы не наблюдаем. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует. Таким образом, все, что происходит вокруг нас, мы можем считать процессом самоорганизации, то есть процессом, идущим за счёт внутренних стимулов, не требующих вмешательства внешних факторов, не принадлежащих системе. К числу таких процессов относится также и становление и действие Разума, ибо он родился в системе в результате её эволюции. Итак, весь процесс эволюции системы - процесс самоорганизации. Мир всё время меняется. Мы не можем утверждать, что процесс самоорганизации направлен на достижение состояния равновесия (под которым понимается абсолютный хаос), у нас нет для этого оснований, гораздо больше данных для утверждения обратного - мир непрерывно развивается, и в этом изменении просматривается определённая направленность, отличная от стремления к равновесию.

Для описания основ процесса самоорганизации удобно (хотя и заведомо недостаточно) использовать терминологию дарвиновской триады: наследственность, изменчивость, отбор, придав этим понятиям более широкий смысл. Изменчивость в этом более широком смысле - это вечно присутствующие факторы случайности и неопределённости. Без предположения о непрерывно действующих случайных факторах, постоянная эволюция системы, сопровождающаяся появлением новых качественных особенностей, по-видимому, невозможна. Что касается термина “наследственность”, то он означает лишь то, что настоящее и будущее любой системы в мире зависит от его прошлого. Степень зависимости той или иной системы от прошлого может быть любой. Эту степень зависимости условимся называть памятью системы. Во вполне детерминированных системах прошлое однозначно определяет будущее (возможно и обратное - по-настоящему определить прошлое). Такие системы - системы с бесконечной памятью (абсолютной наследственностью). Это абстракция, но она хорошо интерпретирует некоторые процессы в неживом мире - например, то движение планет, которое мы наблюдаем (конечно, лишь на некотором, конечном, правда очень большом, интервале времени. “Память системы” в реальных системах в том смысле, как мы её определили, чаще всего оказывается ограниченной: и бесконечная память и её отсутствие - лишь абстракции, которые удобны для интерпретации. Примером системы, лишённой памяти, является развитое турбулентное движение.

Понятие “принципов отбора” является самым трудным среди понятий дарвиновской триады. Процессы самоорганизации следуют определённым правилам, законам. Это утверждение - некое эмпирическое обобщение, вопрос о происхождении этих правил лежит вне рационализма, как и вопрос о рождении Вселенной.

Вследствие этого необходимо более подробно коснуться понятия самоорганизации в живой и неживой природе, или точнее, нового научного направления, изучающего именно эти процессы на Земле и во Вселенной - синергетики.

1. Понятие самоорганизации

Самоорганизация -- это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жесткий, а вероятностный характер. Основные свойства самоорганизующих систем -- открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми нелинейными диссипативными системами, далекими от равновесия.

Свойства самоорганизации обнаруживают объекты самой различной природы: живая клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т.д. Процессы самоорганизации осуществляются за счет перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов самоорганизации -- их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы протекают при взаимодействии системы с окружающей средой, в той или иной мере автономны и относительно независимы от нее.

2. Самоорганизация систем

В последние десятилетия развивается представление о том, что материи изначально присуща тенденция не только к разрушению упорядоченности и возврату к исходному хаосу, но и к образованию все более сложных и упорядоченных систем разного уровня. Представление о разрушительной тенденции материи сформировалось в результате развития двух отраслей классической физики - статистической механики и термодинамики, - которые описывают поведение изолированных (замкнутых) систем, т. е. систем не обменивающихся ни энергией, ни веществом с окружающей средой. При этом особая роль принадлежит второму началу термодинамики, определяющему необратимость процессов преобразования энергии в замкнутой системе. Такие процессы рано или поздно приводят систему к ее самому простому состоянию - термодинамическому равновесию, которое эквивалентно хаосу, когда отсутствует какая-либо упорядоченность и все виды энергии переходят в тепловую, в среднем равномерно распределенную между всеми элементами системы. В прошлом обсуждалась возможность приложения второго начала термодинамики ко Вселенной, которая полагалась замкнутой системой. Из этого следовал вывод о деградации Вселенной - ее тепловой смерти.

Известно, что все реальные системы, от самых малых до самых больших, являются открытыми, т. е. они обмениваются энергией и веществом с окружающей средой и не находятся в состоянии термодинамического равновесия. В таких системах возможно образование нарастающей упорядоченности. На данной основе возникло представление о самоорганизации вещественных систем

В последние десятилетия исследования процессов самоорганизации производятся в трех направлениях: синергетика, термодинамика неравновесных процессов и математическая теория катастроф.

Синергетика изучает связи между элементами (подсистемами) структуры, которые образуются в открытых системах (биологических, физико-химических и др.) благодаря интенсивному обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности, т. е. уменьшается энтропия. Основа синергетики - термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн. Объект изучения синергетики, независимо от его природы, должен удовлетворять трем условиям: открытость, существенная неравновесность и скачкообразный выход из критического состояния.

Открытость означает незамкнутость системы, для которой возможен обмен энергией и веществом с окружающей средой. Существенная неравновесность приводит к критическому состоянию, сопровождающемуся потерей устойчивости. В результате скачкообразного выхода из критического состояния образуется качественно новое состояние с более высоким уровнем упорядоченности. Примером самоорганизующейся системы может служить оптический квантовый генератор - лазер. При его работе соблюдаются три перечисленные условия: открытость системы, снабжаемой извне энергией, ее сугубая неравновесность, достижение критического уровня накачки, при котором возникает упорядоченное, монохроматическое излучение.

«Повсюду, куда ни посмотри, обнаруживается эволюция, разнообразие форм и неустойчивости. Интересно отметить что такая картина наблюдается на всех уровнях - в области элементарных частиц, в биологии, в астрофизике», - так считает один из основоположников термодинамики неравновесных процессов, лауреат Нобелевской премии 1977 г. бельгийский физик и физикохимик И.Л. Пригожий (р. 1917).

Самоорганизация включает случайное и закономерное в развитии любых систем, в котором можно выделить две фазы: плавную эволюцию, ход которой достаточно закономерен и детерминирован, и скачок в точке бифуркации, протекающий случайно и поэтому случайно определяющий последующий закономерный эволюционный этап вплоть до следующего скачка в точке бифуркации. Прямое отношение к концепции самоорганизации имеет математическая теория катастроф, описывающая различные скачкообразные переходы, спонтанные качественные изменения и т. п. В теории катастроф применяется довольно сложный математический аппарат - топологическая теория динамических систем.

3. Типы процессов самоорганизации

Различают три типа процессов самоорганизации:

процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных);

процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования (здесь исследуются главным образом гомеостатические механизмы, в частности, механизмы, действующие по принципу отрицательной обратной связи);

процессы, связанные с совершенствованием и саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт.

Специальное исследование проблем самоорганизации впервые было начато в кибернетике. Термин «самоорганизующая система» ввел английский кибернетик У. Р. Эшби в 1947 г. Широкое изучение самоорганизации началось в конце 50-х гг. XX в. в целях отыскания новых принципов построения технических устройств, способных моделировать различные стороны интеллектуальной деятельности человека. Исследование проблем самоорганизации стало одним из основных путей проникновения идей и методов кибернетики, теории информации, теории систем, биологического и системного познания.

Мир нелинейных самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем «нелинейный мир» сложнее моделировать. Как правило, для приближенного решения большинства возникающих нелинейных уравнений требуется сочетание современных аналитических методов с вычислительными экспериментами. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.д.

Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики -- существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций. Такие закономерности существуют. Это открытость, нелинейность, диссипативность.

4. Самоорганизация сложных систем

Характерной особенностью развивающихся систем является их способность к самоорганизации, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды.

Адаптация системы к меняющимся условиям происходит благодаря появлению элементов, обладающих необходимыми для функционирования системы свойствами, причем благодаря не просто появлению таких элементов (имеется в виду не только появление новых элементов, но и возникновение у "старых" элементов новых признаков), а избыточности таких элементов-признаков. Увеличение числа сходных элементов лежит в основе прогрессивного развития систем, так как является предпосылкой для дальнейшего отбора элементов, дифференциации и интеграции структур. Вместе с тем увеличение числа сходных элементов - простейшее средство для увеличения надежности воспроизведения, для интенсификации функций и расширения связей с внешней средой. Периоду адаптации (устойчивости системы) соответствует постоянное накопление приспособительных признаков широкого значения, нарастание универсализма системы. В результате флуктуаций в системе возникают регулирующие сигналы, которые изменяют, приспосабливают структуру системы так, чтобы система продолжала функционировать необходимым образом.

Период адаптации - это период эволюционных преобразований, которые связаны лишь с количественными изменениями в системе. Структурная устойчивость при этом не нарушается. Понятие структурной устойчивости играет важную роль в теории самоорганизации.

Процесс эволюции - это результат взаимодействия системы с внешней средой, поэтому при исследовании этого процесса необходимо рассматривать процесс система-внешняя среда.

Значение внешних и внутренних факторов в органической эволюции Шмальгаузен выявляет, объясняя эволюционный процесс как процесс направленный: "Биогеоценоз выступает по отношению ко всем составляющим его популяциям видов как управляющее устройство. Контроль и регуляция взаимозависимостей популяций разных видов друг с другом и с неживыми компонентами биогеоценоза совершаются через отбор или дифференциальное участие особей в воспроизведении следующего поколения. Гибель, полное или частичное устранение от размножения всех, кто не может выполнять биогеохимическую функцию, поддерживает устойчивость процессов циркуляции вещества и энергии в биогеоценозе и вместе с тем обеспечивает эволюцию отдельных видов. Эволюция является побочным, но неизбежным результатом поддержания устойчивости системы высшего по отношению к организму ранга. Отбор, осуществляя контроль и регуляцию, т.е. поддерживая стационарное состояние биогеоценоза, тем самым становится движущим фактором эволюции вида и обеспечивает не просто изменение вида как системы, которое могло бы привести ее к разрушению, а переход системы из одного гармонического (устойчивого по принципу регулирования) состояния в другое гармоническое состояние".

Множественное регулирование по принципу обратной связи, или самонастройка развивающего организма, лежит в основе поддержания устойчивого состояния, обеспечивает сохранение устойчивости процесса развития при нерегулярно меняющихся внешних условиях, обеспечивает надежность достижения результата развития в регулярно меняющихся условиях среды. Самонастройка составляет основу приспособленности организма к среде и взаимного приспособления органов друг к другу. Но она же составляет и основу приспособляемости, правда, на другом - надорганизменном уровне организации жизни.

Действие регуляторного механизма развития системы проявляется на различных уровнях ее организации и зависит от реакции на изменение внешних факторов, от форм взаимодействия системы с факторами внешней среды. В зависимости от уровня структуризации системы взаимозависимость с внешними факторами проявляется в различных формах, так как относится к разным уровням организации системы и различным процессам. В роли регулятора выступает внешняя среда, включающая рассматриваемую систему. Внешняя среда должна быть связана с развивающейся системой двумя линиями связи - прямой линией передачи управляющих сигналов от внешней среды к системе и линией обратной связи, передающей во внешнюю среду информацию о действительном состоянии системы. В процессе своего функционировании система передает во внешнюю среду информацию о количественном составе соответствующих элементов-признаков, об их распределении. Во внешней среде происходит преобразование этой информации (контроль и отбор наиболее ценной информации). Отобранная информация накапливается во внешней среде и передается в систему путем появления соответствующих свойств (признаков) у элементов системы.

В биологических системах в роли регулятора выступает биогеоценоз. Популяция, входящая в состав данного биогеоценоза, связана с ним двумя каналами. Первый канал связи лежит на молекулярном уровне организации и служит для передачи наследственной информации от зиготы до первичных половых клеток зрелой особи. Второй канал связи лежит на уровне организации особи и служит для передачи обратной информации от фенотипов к биогеоценозу. Между этими двумя каналами "вставлены" механизмы преобразования, обеспечивающие связь между ними и замыкающие таким образом элементарный цикл эволюционных изменений.

Таким образом, осуществляется двусторонняя связь между внешней средой и включенной в ее состав системой. Однако между обеими линиями передачи нет непосредственной связи, так как они находятся на разных уровнях. Накопленная информация передается по прямому каналу на уровне признаков отдельных элементов, а обратная информация - только на уровне элементов и компонентов системы. Так как регулирующие механизмы развития системы связаны с внешней средой, то следует считаться с возможностью различных случайных внешних влияний, которые искажают передачу информации и нарушают нормальное течение преобразований.

Если биогеоценоз в целом играет роль регулятора эволюционного процесса, то он обязательно должен быть обеспечен "информацией" о состоянии популяции (по линии "обратной" связи), должен включать в себя специфический механизм преобразования этой информации в управляющие сигналы и средства передачи последних на популяцию. Таким образом, кроме механизма преобразования, необходимы каналы связи для передачи информации в двух направлениях - от популяции к биогеоценозу и от биогеоценоза к популяции. Так как изменение популяции, будучи элементарным эволюционным процессом, всегда сопровождается наследственным изменением ее особей, то управляющие сигналы от биогеоценоза к популяции должны каким-то образом включить возможность изменения ее наследственной структуры. Последнее может произойти только в процессе преобразования информации в самом биогеоценозе (т.е. в "регуляторе"). Так как первичные эволюционные изменения возможны только в популяции (или в поколениях особей, но не в отдельных особях), то наиболее простым изменением является хотя бы небольшое изменение в генетическом составе популяции, т.е. в соотношении числа особей с разной наследственной характеристикой (генотипов). Информация о таких изменениях популяции может быть сообщена через наследственный аппарат ее особей и передана особям следующего поколения при посредстве, например, половых клеток. Такой аппарат действительно имеется, и, несомненно, он полностью обеспечивает надежную связь популяции с регулирующим механизмом биогеоценоза и дальнейшую передачу информации от одного поколения особей к следующему. Имеются и средства передачи обратной информации от популяции к биогеоценозу. Популяция, несомненно, активно воздействует на биогеоценоз, хотя бы через потребление пищевых материалов и накопление продуктов своей жизнедеятельности. В известных условиях популяция может внести значительные изменения в строении биогеоценоза. Таким образом, имеются и каналы обратной связи.

Однако нет прямой связи между наследственной информацией по первому каналу (от биогеоценоза) и обратной информацией по второму каналу (от популяции к биогеоценозу). Здесь непосредственная связь как будто прерывается, так как обе линии связи находятся на разных уровнях. Наследственная информация передается на внутриклеточном (молекулярном) уровне организации, а обратная информация - только на уровне организации целой особи.

Переход от одной линии связи к другой совершается посредством довольно сложного механизма преобразования. Наследственная информация преобразуется в процессах индивидуального развития в средства передачи обратной информации, именно в фенотип особи, являющейся реальным носителем жизни и активным участником наступления на жизненные ресурсы биогеоценоза ("борьбы за существование"). В биогеоценозе через естественный отбор и процессы размножения происходит новое преобразование этой информации в наследственную с переходом от уровня организации особи (в фенотипах) на уровень организации клетки (половые клетки, зиготы). Так замыкается полный круг преобразований в элементарном цикле эволюционного процесса.

Таким образом, можно еще раз сказать, что адаптация системы происходит за счет избыточности элементов-признаков, за счет накопления информации в системе о состоянии окружения. Избыточность обеспечивает селекцию, отбор наиболее оптимальных вариантов.

Причиной многообразия форм в популяции является, конечно, процесс мутирования. Стабилизирующая форма естественного отбора препятствует накоплению одинаковых мутаций, переводит наследственное многообразие особей в скрытое состояние и всегда поддерживает количество наследственной информации в популяции на довольно высоком уровне. На еще более высоком уровне поддерживается и количество обратной информации в фенотипах популяции. Следовательно, энтропия популяции остается высокой. Популяция - мало организованная биологическая система, и этот низкий уровень организации, т.е. некоторый беспорядок и неопределенность, поддерживается действием стабилизирующего отбора. Этим самым поддерживается высокая эволюционная пластичность популяции и вида в целом. В случае изменения соотношений между популяцией (видом) и внешней средой (биогеоценозом) нормальные особи теряют свою приспособленность. Стабилизирующий отбор в известных отношениях (по признакам, утратившим свое значение) прекращается, и это ведет к увеличению числа разнообразных мутаций. Резко увеличивается количество информации в отдельных особях, организация расшатывается. Однако некоторые мутации и их комбинации могут получить в новых условиях среды положительную оценку. Это ведет к свободному их накоплению под руководящим влиянием движущей формы естественного отбора.

Стабилизирующая форма отбора ведет, собственно, к двум разным, но одинаково важным результатам: к максимальной устойчивости особи и возможной мобильности, т.е. эволюционной пластичности популяции.

Стабилизирующая форма естественного отбора выступает в роли фактора, формирующего и поддерживающего надежное функционирование первого канала связи от зиготы к первичной половой клетке (путем клеточных делений) и безошибочное преобразование полученной таким образом информации в процессах индивидуального развития. Она ведет к созданию и максимальной стабилизации аппарата индивидуального развития и к нормализации популяции, ее особей и признаков.

Движущая (преобразующая) форма отбора выступает в роли фактора, формирующего и поддерживающего функцию второго канала связи от популяции к биогеоценозу. Она ведет к тем перестройкам в организации наследственного аппарата (в первом канале связи) и механизма индивидуального развития (в формах преобразования информации), которые способствуют возникновению новых адаптаций; к специализации, общему усложнению организации и увеличению активности отдельных особей, т.е. к изменению форм жизнедеятельности как средств связи по второму каналу. Преобразующий отбор использует в своей деятельности то, что достигнуто стабилизирующим отбором, - высокую наследственность тех уклонений от нормы, которые вызваны изменением генотипа.

Эмбриологические работы Шмальгаузена показали, что наиболее быстро эволюционируют те структуры, которые в процессе развития зародыша наиболее независимы от остальных частей организма.

Идея ускорения эволюции наиболее стабильных структур явилась высшей точкой синтеза идеи устойчивости и идеи эволюции.

Исследования Шмальгаузена показывают, что для развития системы нужны закрепленные признаки, появившиеся в результате адаптации к внешней среде, т.е. необходимо наличие в системе определенной формы памяти. Но одной наследственности для развития мало, нужен активный обмен с внешней средой, система должна быть открытой. Организационные формы не могут возникнуть без специально организованной памяти. Но наряду с "накопленным опытом" система должна обладать способностью к обучению.

Таким образом, Шмальгаузен связал один из факторов эволюции - изменчивость с процессами передачи, преобразования, накопления информации. При этом понятие "информация" связывается с числом элементов-признаков. На этапе адаптации важную роль играет избыточность информации.

5.Условия возникновения самоорганизации

Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий.

М. Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.

Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне.

Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.

Достаточно сложно дать продуктивное универсальное определение ценности информации, так как оно дано для количества информации. Ценность информации различна для одной и той же системы при различных целях, различных условиях внешней среды. Ценность зависит от того запаса накопленной информации, которую имеет система. Ценность - это степень ее неизбыточности, незаменимости.

Информация, накопленная в процессе эволюции, - это "оцененная" информация, и число битов мало что говорит о ее функциональном значении. Накопление информации - это увеличение числа элементов, обладающих заданным признаком.

Ценность информации оказывается тем большей, чем меньше разнообразных способов выполнить заданную функцию. Если сравниваются системы, выполняющие различные функции, то ценностный критерий уже оказывается малопригодным, здесь по-прежнему можно использовать количественный информационный критерий. Количественный и прагматический информационные критерии необходимо применять не порознь, а совместно, только в этом случае можно достигнуть наиболее адекватного определения степени организации, как в функциональном, так и во многих других отношениях.

Для появления согласованных направленных процессов в системе необходимо использование информации в процессе функционирования системы. Если использования нет, то новые признаки у элементов появляются независимо от того, какие признаки есть у других элементов. Если нет использования информации, то нет ее накопления во внешней среде, а следовательно, нет передачи накопленной информации из внешней среды в систему. Организация в системе связана с локализацией элементов, обладающих определенными признаками, с концентрацией этих элементов, то есть образованием диссипативной структуры. Локализованные диссипативные структуры имеют способность накапливать информацию за счет своего рода "примитивной памяти". Такая локализация происходит благодаря самоинструктирующему процессу использования информации.

В процессе использования информации происходит отбор тех элементов-признаков, которые дают преимущества в ходе развития. Использование информации не является ее атрибутом, а лишь свойством, проявляющимся в определенных условиях.

Во всех случаях, когда проводится сравнение и отбор информации, это происходит на основе их оценки по качеству. На линиях обратной связи всегда идет сопоставление реального результата некоторого действия с тем, который закодирован в программе. Это всегда означает прежде всего оценку по качеству информации. Если информация из внешней среды дает указания на существование пищевых материалов, то прежде всего происходит их апробирование - сопоставление с требуемым материалом по его качеству. Если биоценоз получает информацию о новом варианте организмов (через его деятельность), то всегда идет сопоставление нового варианта с прежней нормой. В борьбе за существование отбор нового варианта происходит не на основе количества, а только по качественным показателям (в сравнении с нормой).

Самоинструктирующий характер процесса отбора приводит к тому, что уменьшается диссипация, так как уменьшается разнообразие элементов-признаков. А это, в свою очередь, уменьшает устойчивость системы. Система не просто удаляется от равновесного состояния, а удаляется с возрастающей скоростью, так как в отборе побеждают более совершенные структуры, возникающие раньше других.

Одним из условий возникновения самоорганизации является реализация отбора информации, имеющей определенную меру качества (ценность). Информация обретает ценность в конкретном процессе ее использования. Для того чтобы начался процесс самоорганизации, необходимо, чтобы отбор происходил при определенных условиях, а именно: система должна быть далекой от равновесного состояния; интенсивность роста числа элементов должна быть достаточной для того, чтобы вывести систему из устойчивого состояния.

Если скорость роста числа новых элементов невелика, то независимо от начальных данных через определенное время установится стационарное состояние. Скорость роста числа новых элементов должна превышать скорость отмирания "старых" элементов. Процесс роста должен иметь "автокаталитический" характер, т.е. появление нового признака у одного элемента должно вызывать появление того же признака у других элементов. Если скорость роста будет меньше скорости отмирания, то система не будет обладать внутренней способностью к росту, которая необходима для отбора против менее эффективных признаков. Подобная система несла бы в себе всю бесполезную информацию предшествующих элементов-признаков, которая в конце концов блокировала бы дальнейшую эволюцию. Для реализации отбора необходима избыточность информации.

В самоорганизующейся системе возможный максимальный беспорядок увеличивается за счет присоединения новых элементов к системе. Но простое добавление элементов в систему еще не превращает ее в самоорганизующуюся. Во время добавления элементов к системе энтропия системы должна сохраняться постоянной. Для выполнения этого условия необходимо выделение отрицательной энтропии из окружающей среды, т.е. дополнительный ввод энергии, информации в систему, который выражается в передаче накопленной информации из внешней среды в систему.

С возрастанием ценности связано и возрастание способности биологической системы к отбору ценной информации. Эта способность велика у высших животных, органы чувств которых предназначены для такого отбора. Отбор ценной информации лежит в основе творческой деятельности человека. Такой отбор не требует дополнительных энергетических затрат - энергетическая стоимость одного бита информации не зависит от ее ценности.

Естественный отбор означает сравнительную оценку фенотипов применительно к данной экологической нише, т.е. поиск оптимальной ценности.

Источником одной интересной аналогии служат шахматы. Согласно теории Стейница, следует играть позиционно, накапливая малые преимущества. Когда они достаточны, шахматист должен искать комбинационный решительный путь к выигрышу. Нетривиальность этой теории, подробно аргументированной Э.Ласкером, заключается в следующем: если позиционные преимущества не используются в надлежащий момент - они рассеиваются. Ласкер писал: "У мастеров комбинационная и позиционная игра дополняют друг друга. При помощи комбинации шахматист стремится опровергнуть ложные ценности, а путем позиционной игры он старается закрепить и использовать истинные ценности".

Ласкер рассматривал шахматы как модель "жизненной борьбы", но ему не приходило в голову, что шахматы могут служить моделью естественного отбора, борьбы за существование: накопление малых преимуществ подобно микроэволюции, переход к комбинации подобен макроэволюции, своего рода фазовому переходу.

Теория функциональных систем, сформулированная выдающимся физиологом академиком П.К. Анохиным, утверждает, что движущий стимул поведения человека и животного - полезный приспособительный результат. Им могут быть оптимальное давление крови, достаточное содержание в ней кислорода и питательных веществ, внешние факторы, скажем, пища, вода, итоги социальной деятельности. Во имя достижения поставленных целей в организме создаются временные, "рабочие" объединения структур мозга, различных органов, систем, которые мобилизованы для выполнения отдельной функции. Эта концепция описывает общие принципы, по которым складывается физиологическая архитектура таких объединений.

Поисковая активность организма - один из важнейших факторов выживания. Она повышает интенсивность обмена информацией с внешней средой, тем самым способствует повышению используемости новых организационных структур, возникших во время стресса.

Современная теория стресса, разработанная великим ученым Гансом Селье, утверждает, что под влиянием сильного внешнего стимула после кратковременного периода перестройки, так называемой адаптации, организм вступает в состояние повышенной устойчивости. Но через более или менее длительное время при продолжении внешнего воздействия этот период внезапно и без всяких дополнительных условий сменяется фазой истощения, когда сопротивляемость резко падает. Существуют факты, противоречащие этой теории. Некоторые ученые отводят решающую роль в устойчивости организма поисковой активности.

Если поиск прекращается, а потребность в нем сохранена, то невозможность ее удовлетворения приводит к отрицательным переживаниям и понижает устойчивость организма. Если же таковая потребность ослаблена или отсутствует, то низкий уровень активности может и не сопровождаться отрицательными эмоциями, но и в этом случае субъект остается повышенно уязвимым для внешних вредных воздействий.

Поисковая активность повышает интенсивность процесса возникновения новых функциональных структур, необходимых "для достижения цели", для отражения влияния вредных факторов.

Обращаясь к вышеизложенной концептуальной модели развития, отметим, что этапу преобразующего отбора соответствует состояние неустойчивости, т.е. этап зарождения и формирования новой системы. Переход от этапа формирования к эволюции отобранного состояния можно рассматривать как скачок в развитии.

Исследования процесса самоорганизации показали, что на организованность системы, т.е. на ее энтропию, влияют в основном два параметра: интенсивность роста числа элементов в системе и интенсивность использования элементов в процессе функционирования системы. Рост числа элементов в системе может привести систему в неустойчивое состояние и создаст предпосылки дня отбора наиболее ценных для развития системы элементов. Ценность же элементов определяется в процессе их использования. Чем выше интенсивность роста числа элементов в системе, тем быстрее система стремится к неустойчивому состоянию, приближая момент скачкообразных изменений. Но переход на новый качественный уровень структурной организации произойдет лишь тогда, когда интенсивность использования, которая играет роль организатора в системе, будет достаточно велика для того, чтобы уменьшить энтропию в системе и перевести систему в новое устойчивое состояние. Таким образом, изменяя параметры системы, а именно интенсивность роста числа элементов и интенсивность их использования, мы можем инициировать процесс самоорганизации в системе, замедлять или ускорять его. При этом мы можем перевести систему на новый, более совершенный уровень развития или разрушить ее.

Гибель системы может произойти в двух случаях. Во-первых, когда случайные флуктуации во внешней среде приводят к гибели отдельных элементов системы, к разрушению взаимосвязи между ними, в результате чего система уже не способна выполнять заданные функции. Во-вторых, когда нет использования информации о тех или иных свойствах элементов системы в процессе функционирования во внешней среде. Нет использования, а следовательно, и накопления информации во внешней среде, в результате чего нарушается прямая связь системы с внешней средой. Нарушается работа регулирующих механизмов, что приводит к дезорганизации системы и, как следствие, к ее гибели.

Рассмотренная модель процесса самоорганизации системы позволяет сформулировать основные требования к математической модели.

Прежде чем приступить к анализу процесса развития системы, нужно определить те признаки элементов, которые являются инвариантами для исследуемой группы элементов. И уже для этих выбранных элементов-признаков рассматривать степень упорядоченности, рассматривать рост и отмирание именно этих признаков.

Модель должна связывать динамические характеристики системы (интенсивность роста и использования элементов-признаков) с функцией состояния системы, которая характеризует изменение ее упорядоченности, т.е. с энтропией. Модель должна быть нелинейной, так как она должна отражать и количественные и качественные изменения в системе. В модели должен быть отражен механизм обратной связи системы со средой.

6. Самоорганизация в живой природе

Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы.

Если в некое пространство с травой, произрастающей в достатке, поместить кроликов, то, поедая траву, они начнут усиленно размножаться, т.е. произойдет реакция: Кролик + Трава => Больше Кроликов, или К + Т => 2К (как эту реакцию записали химики). Данный процесс вполне аналогичен непрерывному подводу тепла (трава) в задаче с ячейками Бенара.

Но вот в данную экологическую нишу поместили хищных лисиц, которые питаются кроликами и размножаются: Лисица + Кролик => Больше лисиц, или химически: Л + К => 2Л.

Однако в свою очередь лисицы, как и кролики, являются жертвами. Лисицы -- жертвы человека, который отстреливает их на мех: Лисицы => Мех, или химически: Л => М.

Конечный продукт этой сложной реакции -- мех -- выводится вовне из реакционной зоны. Его можно рассматривать как носитель энергии, выводимый из системы, к которой энергия была вначале подведена, например, в виде травы. Таким образом, в экологической системе также существует поток энергии, аналогичный потоку, имеющему место в химическом реакторе.

Анализируя этот сложный процесс, можно заметить, что в нем существуют две автокаталические стадии (положительная обратная связь), играющие определенную роль в его самоорганизации. Одна из них -- «производство» (рождение) кроликов от кроликов, поедающих траву, вторая -- рождение лисиц от лисиц, поедающих кроликов. Чем больше кроликов имеется, тем больше их рождается при наличии запасов травы. И если бы не было хищных лисиц, неконтролируемое размножение кроликов привело бы к неконтролируемому увеличению их численности. Так произошло в Австралии в середине XIX в. Однако возможно такое же автокаталитическое размножение лисиц при большом количестве кроликов. Но если оно произойдет, то приведет к резкому снижению численности популяции кроликов. А это, в свою очередь, приведет к уменьшению численности популяции лисиц, так как им для размножения надо поедать кроликов. Когда численность лисиц упадет, популяция кроликов получит время для восстановления своей численности. После восстановления численности кроликов начнет восстанавливаться численность популяции лисиц и т.д. Данный анализ показывает, что система самоорганизуется во времени. В действительности будут происходить периодические колебания численности кроликов и лисиц, сдвинутые во времени, т.е. возникнет экологически устойчивая структура.

Анализ показывает, что в биосфере существует огромное количество сильно неравновесных систем, поэтому можно утверждать, что возникновение условий для их самоорганизации -- явление довольно частое. А так как условия для самоорганизации выполнены, то жизнь становится столь же предсказуемой, как неустойчивость Бенара или любое другое вероятное событие. Тот факт, что жизнь возникла на молодой Земле через ~4-10 лет после ее образования (т.е. 4-109 лет тому назад) является аргументом спонтанной самоорганизации, произошедшей при благоприятных обстоятельствах.

Исследованием поведения неравновесных систем в точках, потери устойчивости или переходов из одной формы самоорганизации в другую занимается теория бифуркаций или, как ее еще называют, теория катастроф.

Слово «бифуркация» означает раздвоение и употребляется в широком смысле для обозначения всевозможных качественных перестроек или метаморфоз различных объектов при плавном изменении параметров, от которых они зависят. Катастрофами называют скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. В результате катастрофы-взрыва система может не только скачкообразно изменить свое состояние, но и разрушиться.

Заключение

Можно сказать, что процесс самоорганизации природных систем заключается в обретении ими все более и более совершенного динамического равновесия с окружающей средой.

Идеи универсального эволюционизма и свойства общественного человеческого сознания имеют между собой много общего. Стержнем универсального эволюционизма является схема, отражающая сквозную линию развития от низших форм движения к высшим. Эта сквозная линия допускает развитие, усложнение и усовершенствование, вследствие чего процессы и явления природы могут рассматриваться с некоторых единых позиций.

Идеи универсального эволюционизма обладают значительной гибкостью и могут принимать самые разные очертания. Как следствие этого, эволюционизм существует в виде огромного количества вариантов и версий. Идеи эволюционизма -- это каркас для целого спектра различных по существу представлений о мире.

В настоящее время все настоятельнее проявляется естественное желание использовать физические принципы становления и развития неживой и живой природы и идеи синергетического подхода для описания поведения сложных неравновесных самоорганизующихся систем и решения обществоведческих проблем гуманитарных наук.

Новая мировоззренческая парадигма, основанная на представлениях синергетики, устраняет различия между естествознанием и обществоведением и дает возможность создать универсальную эволюционно-синергетическую картину мира. Понятия синергетики и аппарат нелинейного мышления превращают изначально гуманитарно-интуитивные методы описания социальных, экономических, психологических, исторических и других объектов и систем гуманитарной природы из описательных в научно обоснованные (прогнозируемые; Футурологические перспективы развития человечества при этом основываются на возможности эволюции перехода материи от более вероятных хаотических состояний к менее вероятным, но реально возможным и более организованным, упорядоченным состояниям.

В рамках физических представлений синергетических моделей цивилизация в целом и конкретное общество в частности являются сложными неравновесными системами, устойчивость которых обеспечивается взаимодействием внешних и внутренних причин развития. Совокупность механизмов, включающих орудия и другие материальные объекты, языки, мифологию, мораль и т.д., т.е. то, что представляет собой понятие культуры, также может быть выражена в таких параметрах целостного эволюционного развития самоорганизующихся систем, как нелинейность процессов, бифуркация отдельных фаз развития и эволюционные катастрофы.

Современное естествознание становится по существу постнеклассической интегративной наукой, в которой в первую очередь должны использоваться достижения и тенденции новой синергетической физики. При этом наблюдается тенденция перехода от собственно познавательной сущности науки к научному методу решения проблем экономического, социального, политического и культурного характера и получению обоснованных прогнозов будущего развития. Н.Н. Моисеев писал:

Мы на пороге новой культуры - синтеза глобального духовного сознания и глобального научного знания.

Можно привести большое количество примеров, подтверждающих, что синергетические модели современной постнеклассической физики применяются к сложным гуманитарным системам в динамической истории цивилизаций, возникновении этносов, самоорганизации социально-экономических процессов, кризисов развития человеческого общества, принципов устойчивого развития глобализма.

В связи с этим в анализе сложных систем значительно возрастает роль физических и математических моделей и в целом моделирования процессов различной природы, рассмотрения конфликтных ситуаций и принятия решений.

Размещено на Allbest.ru

Подобные документы

    Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа , добавлен 31.01.2010

    Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

    реферат , добавлен 30.09.2010

    Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

    реферат , добавлен 18.11.2007

    Обмен веществ как главное отличие живых объектов и процессов от неживых. Два основных типа биополимеров в составе живых систем: белки и нуклеиновые кислоты (ДНК и РНК). Необходимые для жизни физические и химические условия. Свойства живых систем.

    контрольная работа , добавлен 22.05.2009

    Современное понятие "открытая система". Проблема анализа целостных свойств открытых систем в зависимости от времени. Общность процессов типа 1/f (процессов типа фликкер-шума) для всех систем. Старое и новое математическое описание процессов типа 1/f.

    курсовая работа , добавлен 23.11.2011

    Дриопитеки как животные предки человека. Представители человеческой линии эволюции - австралопитеки. Эволюция рода человек. Самоорганизация как основа эволюции. Основные условия и положения самоорганизации систем. Две теории о происхождении материков.

    контрольная работа , добавлен 10.08.2009

    Синергетика – наука о процессах развития и самоорганизации сложных систем произвольной природы. Характеристика структурных принципов бытия и становления (гомеостатичности, иерархичности, незамкнутости, неустойчивости, эмерджентности, наблюдаемости).

    реферат , добавлен 14.03.2011

    Основные особенности и внутрисистемные связи живых систем. Наличие собственной программы их развития и способность к активному оперированию информацией. Периодический закон развития живых систем. Иерархическая функционально-структурная организация.

    курсовая работа , добавлен 22.07.2009

    Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.

    реферат , добавлен 09.09.2008

    Теория самоорганизации в современном естествознании. Энгельс о гипотезе тепловой смерти Вселенной и превращении форм движения. Второй закон термодинамики - закон деградации энергии. Принцип существования энтропии. Необратимость природных процессов.

Вопрос о том, что такое самоорганизация, является очень интересным. Рассмотрим его в данной статье. Самоорганизация систем - это который приводит в результате взаимодействия различных его участников к возникновению более эффективных структур.

Изучение показывает, что многие открытые сложные образования, которые состоят из большого количества подсистем, способны при конкретных условиях к эволюции и самоорганизации.

История изучения самоорганизации

Для общественных и природных процессов значение самоорганизации изучалось, пусть на богословском или абстрактно-философском уровне, еще со времен Аристотеля. Сотни трудов были написаны о том, как устроен наш мир, в чем заключена первопричина устойчивости и целостности Вселенной, существующей уже миллиарды лет. Особенно актуальной эта проблема стала в прошлом веке, во второй его половине. Связано это с развитием кибернетики.

Кибернетическое понимание

В философии долгое время господствовал взгляд на данный процесс как на присущее лишь живым системам явление. Самоорганизация в природе, например, - клетка, биологическая популяция. Понаблюдайте за стаей птиц, муравьями или пчелами, и вы поймете, что это такое.

Кибернетическое понимание самоорганизации, то есть определение ее как иерархической централизованной структуры, где снизу поступает информация по каналу обратной связи только как конечный результат, а решают лишь наверху, оказалось не в состоянии отразить реальное функционирование систем, его сложность, а также создать модели объяснения процессов, которые происходят в сложных объединениях.

Неклассический подход

Внутри кибернетики во второй половине 1950-х годов зарождается неклассическое направление, созданное для изучения различных систем (самоорганизация материи, общества). В его рамках был предложен механизм, находящийся ближе к синергетическому, чем к кибернетическому (который считается классическим). Н. Винер, основатель кибернетики, стал одним из неклассиков, исследовавших принцип самоорганизации. В XX веке, в начале 1960-х годов, М. Л. Цетлин, советский ученый, писал о том, что если рассматривать управление как происходящее адресным способом сверху донизу, то система тогда будет очень сложной. Автоматы, если заданы правила игры, сами находят необходимые действия, не нуждаясь в указаниях. Таков, по его мнению, принцип самоорганизации.

Синергетика как дисциплина

Дисциплина синергетика, появившаяся на Западе, к 1975 году установилась как новое направление в науке, весьма перспективное, значительно расширяющее круг различных процессов самоорганизации, ранее изучавшихся кибернетикой. В трудах этого направления можно отметить, что самоорганизация как явление рассматривается в качестве универсального как для неживых, так и для живых систем. Именно с вводом в науку термина "синергетика" отмечено появление двух основных подходов к исследованию: синергетического и кибернетического. Различаются эти два понятия прежде всего в отношении целенаправленности системного поведения, которое наблюдается, когда присутствуют процессы самоорганизации.

Отличия синергетического и кибернетического подхода

Кибернетический подход предполагает наличие определенной заранее цели, к которой самостоятельно стремится система, вокруг которой она самоорганизуется. Синергетический подход не требует цели. С его точки зрения как эффект кооперации между различными элементами системы проявляется самоорганизованность.

Общее у двух подходов

И синергетика, и кибернетика придают важнейшее значение такому понятию, как "управление", преследуя при этом различные цели. Кибернетика разрабатывает методы и алгоритмы, которые позволяют управлять данной системой для того, чтобы она действовала заданным заранее образом. В процессе эксперимента в синергетике изменяются определенным образом различные управляющие параметры, и самоорганизация исследуется как реакция на них, то есть на различные состояния, в которые переходит система под воздействием на нее подобных рычагов управления. То есть под действием определенного управляющего органа организуется кибернетическая система, а в синергетической на ее поведение не влияют непосредственно управляющие параметры. Они лишь запускают механизм внутренней самоорганизации. И у синергетических, и у кибернетических систем поведение выглядит целенаправленным, но в первом случае система выбирает сама путь развития к более высокой своей организации, а во втором цель эта заранее задается.

Синергетика и самоорганизация

Сегодня значение слова "самоорганизация" близко понятию "синергетика". Они часто используются в науке как синонимы. В самом деле, оба этих понятия изучают то, как в пространстве и времени возникает организация из хаоса (процессы самоорганизации) и противоположные явления (процессы самодезорганизации), которые можно наблюдать в системах любой природы, являющихся сложными, открытыми, неравновесными и динамическими. Оба вышеупомянутых механизма (синергетический и кибернетический) имеют единую основу: связи, спонтанно возникшие между элементами, позволяющие создавать структуры, организацию в системе за счет осуществляющихся без всяких управляющих команд локальных взаимодействий.

Тенденция самоорганизующейся системы

Изначально, говоря о явлении самоорганизации, присутствующей у сложных систем, предполагается стремление их к гомеостатической устойчивости, сохранению целостности. Можно отметить следующую главную тенденцию, существующую в поведении некоторого самоорганизующегося объединения: находиться как можно дальше от состояния хаоса, максимальной энтропии, равновесия. Синергетики, с другой стороны, утверждают, что нет развития без неустойчивости, оно происходит через случайности, стрессы. Кризисы и нестабильность способствуют отбору и выявлению лучшего. Экономический кризис, например, дисциплинирует, организует, дает возможность молодым и активным вырваться вперед, а ленивым и слабым - уступить им место на рынке. Система, которую можно считать хорошей, как бы знает границы, возможные в данной области неустойчивости, допустимой стохастичности, и вводит себя по каким-то законам в состояние, активизирующее механизмы самоорганизации. То есть она борется с энтропией, рискуя.

Самоорганизация некоторой системы - это процесс изменения ее характеристик (или состояния), происходящий без определенного целенаправленного начала, независимо от источников целеполагания. Побуждающие ее механизмы причины могут являться как внутренними, так и внешними. Это характерно для таких явлений, как самоорганизация в природе, обществе или неживых системах. Можно говорить также о стихии этого процесса.

Совокупность механизмов самоорганизации

Мы выяснили, что такое самоорганизация в системах и обществе. Каковы же ее механизмы? Совокупность всех механизмов самоорганизации включает в себя отбор, наследственность, изменчивость. Это то, что Н. Н. Моисеев, академик, именует рынком. Именно он предлагает множество вариантов, а стабильность, системные законы и принципы отбора выбирают самые эффективные из них. Рынок, по Моисееву, изучавшийся еще Рикардо и Смитом, - это частный случай так называемого рынка универсума. Природа не смогла придумать другой схемы. Поэтому люди пошли по уже проторенной дороге, ведь иной просто не существовало: логика, по которой самоорганизуется экономика природы и человеческая экономика, является общей.

Виды самоорганизации

Иногда ученые выделяют социальную, биологическую и техническую разновидности самоорганизации, считая, что механизмы их основываются на различных принципах:

Социальная (самоорганизация общества) основана на определенной общественной программе включающей законы, ценности и приоритеты, которые меняются во времени;

Биологическая базируется на программе сохранения вида (генетической), а также на отборе, наследственности и изменчивости (дарвиновской триаде);

Техническая опирается на программу, осуществляющую автоматическую смену определенного алгоритма действий при изменяющихся условиях (автопилот, самонаведение ракет и т.п.).

Выяснение того, что такое самоорганизация, познание существующих взаимоотношений между ней и организацией в социальных системах, - важнейшая задача науки. В любой фирме, компании вместе с целенаправленным управлением, осуществляющимся с помощью планов, документов, указаний, инструкций, нормативных актов, всегда имеются процессы самоорганизации, которые связаны со свойствами системы как целого, с определенными синергетическими эффектами. Так сколько этой самоорганизации должно быть? Есть ли какие-то общие принципы, существует ли возможность с помощью практических знаний и современного языка разработать на этот счет рекомендации?

Самоорганизация в социальных системах

Известно, что чем более жесткой является система управления, тем остается меньше простора для самоорганизации и творчества. Но, отпустив в свободное плавание элементы системы, мы не сможем достигнуть намеченной нами цели. Самоорганизация общества, с одной стороны, достигается путем несанкционированной деятельности, неформального сотрудничества. Но с другой - благодаря четко организованным, целеустремленным действиям управляющих, с помощью обозначенной четко цели.

Итак, что такое самоорганизация в социуме? В социальных системах эволюция предполагает следующее:

Наличие определенной заранее цели, к которой самостоятельно стремится система, самоорганизуясь вокруг данной задачи. Играют большую роль приоритеты инновационного развития, творческого подхода, профессионального роста, а также повышения престижа соответствующей трудовой деятельности.

Адаптивность, изменчивость и гибкость структур управления. Вытесняются административные методы социально-психологическими. Современные сетевые гибкие структуры усиливают имеющиеся синергетические связи, обеспечивающие тем самым увеличение суммарного эффекта. Иерархические жесткие оставляют для самоорганизации малые возможности. Она проявляется в том, что небольшие самостоятельные подразделения не связаны в повседневной деятельности бюрократическими структурами, препятствующими согласованию решений по вертикали и горизонтали.

Децентрализация, диверсификация, повышение производительности отдельного участника, сопричастность каждого к принятию решений по управлению, а также трудовая мотивация.

Использование в различных целях передачи информации, производственных мощностей, ноу-хау, знаний и т.д.

Самоконтроль, самовоспитание, самообразование. На фирме для этого следует создать определенные условия.

Саморазвитие, необходимое для перехода организации на новый уровень (смена структуры, разработка новой цели, накопление информации о структуре).

Мы рассмотрели, что такое самоорганизация, ее определение, специфику и виды. Как вы видите, этим общим термином сегодня обозначаются явления в живых и неживых системах. То есть самоорганизация материи и общества во многом схожи. Этот процесс очень интересен как универсальное свойство систем.

© 2024 skupaem-auto.ru -- Школа электрика. Полезный информационный портал